On narrow V-like ship wakes

1994 ◽  
Vol 275 ◽  
pp. 301-321 ◽  
Author(s):  
Daifang Gu ◽  
O. M. Phillips

This paper is concerned with the generation of short gravity waves and their radiation from the outer edge of the turbulent boundary layer and wake of a ship. They arise primarily near the ship's stern. The wave spectrum in the direction of wavenumber vector at an angle (90° – δ) to the ship's track is: \[\Phi_{\delta}(\omega) = \Psi\left(\frac{UT_d}{2l},\frac{U\sin\delta}{c_g},\frac{R}{UT_d}\right)\frac{1}{k_0R}\frac{2l\omega^2}{g^2}\gamma\left(0,\frac{\pi}{l};0,\omega \right),\] where Ψ is dimensionless and a function of three dimensionless parameters. γ is the spectrum of the oscillating motion at the boundary, U the ship speed, Td the decay timescale of the oscillating motion, 2l the lengthscale of the eddies, and R the distance away from the boundary along the wavenumber vector. Generally, Φδ has large values near δ = 0 and small values at large δ; it behaves as 1/R at distances not far from the ship, then may vary slower than 1/R at intermediate distances, and finally behaves as 1/R again at distances far from the ship. These are consistent with the pattern found in SAR images of narrow V-like ship wakes. The method developed here is also applicable to various problems of surface wave generation by turbulence in water.

2011 ◽  
Vol 674 ◽  
pp. 5-42 ◽  
Author(s):  
CHRISTIAN S. J. MAYER ◽  
DOMINIC A. VON TERZI ◽  
HERMANN F. FASEL

A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer at Mach 3. Its downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using linear-stability theory, parabolized stability equations and direct numerical simulations (DNS). In the present paper, the linear regime is studied first in great detail. The focus of the second part is the early and late nonlinear regimes. It is shown how the disturbance wave spectrum is filled up by nonlinear interactions and which flow structures arise and how these structures locally break down to small scales. Finally, the study answers the question whether a fully developed turbulent boundary layer can be reached by oblique breakdown. It is shown that the skin friction develops such as is typical of transitional and turbulent boundary layers. Initially, the skin friction coefficient increases in the streamwise direction in the transitional region and finally decays when the early turbulent state is reached. Downstream of the maximum in the skin friction, the flow loses its periodicity in time and possesses characteristic mean-flow and spectral properties of a turbulent boundary layer. The DNS data clearly demonstrate that oblique breakdown can lead to a fully developed turbulent boundary layer and therefore it is a relevant mechanism for transition in two-dimensional supersonic boundary layers.


Author(s):  
Santosh Kumar Singh ◽  
Pankaj Kumar Raushan ◽  
Koustuv Debnath ◽  
B. S. Mazumder

In this paper, detailed experimental results are reported to study the effect of the surface wave of different frequencies on unidirectional current over the bed-mounted train of rib roughness. The model roughness used in this study is transverse square ribs that lengthened across the entire width of the recirculating wave channel. The center-to-center rib pitch (P) was constant during the experiments, thus generating a broad range of near-bed flow patterns for each of the three different surface wave frequencies studied here. The relative submergence associated with the roughness height (k) was 8, which fall in the category of large roughness. Velocity measurements were conducted using acoustic Doppler velocimeter (ADV), and a surface wave of different frequencies was generated using the plunger-type wavemaker. The measured velocity data were analyzed to determine the relative importance of mean flow over the train of rib roughness. Mean velocity profiles illustrate the well-known downward shift from the flat surface data of the semi-logarithmic portion of the law of the wall. The width of the turbulent boundary layer increases with the superposition of surface wave compared to that of the current-only flow. The results also show that the mean reattachment length decreases due to the superposition of surface wave on unidirectional current.


1972 ◽  
Vol 56 (1) ◽  
pp. 1-18 ◽  
Author(s):  
R. A. Antonia

The conditional sampling technique is used to measure ensemble averages of the longitudinal and normal velocity fluctuations u and v respectively and of the Reynolds shear stress fluctuations uv both within the turbulent and irrotational regions near the outer edge of a turbulent boundary layer. The measurements are made in both a smooth- and a rough-wall boundary layer under zero-pressure-gradient conditions. The smooth- and rough-wall results are qualitatively similar but the magnitude of the rough-wall averages is higher than that of the smooth- wall averages, corresponding with the higher value of wall shear stress on the rough surface. The maximum shear stress value encountered within a burst represents a significant proportion of the wall shear stress.The statistical properties of the turbulence within the burst are close but not quite identical to the nearly Gaussian properties of the inner region of the boundary layer. During an attempt to distinguish between bursts of different ages or strengths at the time of measurement, it was found that bursts of relatively short duration travel at much the same longitudinal velocity as the local mean U and contribute little to the local shear stress. The longer and less frequent bursts have a mean velocity smaller than U and a maximum shear stress comparable to the shear stress at the wall.


2005 ◽  
Vol 62 (6) ◽  
pp. 1831-1848 ◽  
Author(s):  
Christopher D. Warner ◽  
Adam A. Scaife ◽  
Neal Butchart

Abstract This paper investigates the vertical filtering of parameterized gravity wave pseudomomentum flux in the troposphere–stratosphere version of the Met Office Unified Model. Gravity wave forcing is parameterized using the Warner and McIntyre spectral gravity wave parameterization. The same amount of isotropic pseudomomentum flux per unit mass is launched from the planetary boundary layer at each grid point. The parameterization models the azimuthally dependent Doppler shifting and breaking of the gravity wave spectrum as it is filtered by the background atmosphere. The result is an anisotropic distribution of pseudomomentum flux among azimuthal sectors that varies greatly with altitude and location. This gives an idealized global climatology of nonorographic gravity waves. The filtering effect of the atmosphere in this climatology is diagnosed using the “zonal anisotropy.” Results show areas where observational measurements could be targeted to find the most prominent features in the gravity wave field. Such areas include, for example, the summer stratosphere where zonal anisotropy is very large and where there is a significant localization in latitude and longitude of patches of high zonal anisotropy. Comparisons are also made with recent observational estimates of gravity wave fluxes and test whether wind filtering of a homogeneous, azimuthally isotropic source is enough to reproduce observed features of the gravity wave field.


2010 ◽  
Vol 40 (9) ◽  
pp. 2159-2169 ◽  
Author(s):  
W. E. Farrell ◽  
Walter Munk

Abstract Deep sea (5 km) pressure and velocity at the Hawaii-2 Observatory (H2O), midway between Hawaii and California, exhibit a number of remarkable features that are interpreted using the Longuet–Higgins theory of acoustic radiation from oppositely directed surface waves. A change in the slope of the bottom spectra near 5 Hz can be associated with a transition near 2.5 Hz (25-cm wavelength) of the surface wave spectrum from the classical κ−4 saturated (wind independent) Phillips spectrum to a distinct band of ultragravity waves. Bottom spectra are remarkably stable. Occasional 15-dB busts in the gravities and booms in the ultragravities are prominent features in the bottom records and can be associated with calms and storms at the sea surface. For strong winds, two broad lobes in the directional spectrum of the gravity waves are nearly perpendicular to the wind; as the wind drops, the lobes become narrower and more nearly aligned with the wind, leading to busts.


Sign in / Sign up

Export Citation Format

Share Document