Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3

2011 ◽  
Vol 674 ◽  
pp. 5-42 ◽  
Author(s):  
CHRISTIAN S. J. MAYER ◽  
DOMINIC A. VON TERZI ◽  
HERMANN F. FASEL

A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer at Mach 3. Its downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using linear-stability theory, parabolized stability equations and direct numerical simulations (DNS). In the present paper, the linear regime is studied first in great detail. The focus of the second part is the early and late nonlinear regimes. It is shown how the disturbance wave spectrum is filled up by nonlinear interactions and which flow structures arise and how these structures locally break down to small scales. Finally, the study answers the question whether a fully developed turbulent boundary layer can be reached by oblique breakdown. It is shown that the skin friction develops such as is typical of transitional and turbulent boundary layers. Initially, the skin friction coefficient increases in the streamwise direction in the transitional region and finally decays when the early turbulent state is reached. Downstream of the maximum in the skin friction, the flow loses its periodicity in time and possesses characteristic mean-flow and spectral properties of a turbulent boundary layer. The DNS data clearly demonstrate that oblique breakdown can lead to a fully developed turbulent boundary layer and therefore it is a relevant mechanism for transition in two-dimensional supersonic boundary layers.

Author(s):  
Masaharu Matsubara ◽  
P. Henrik Alfredsson ◽  
K. Johan A. Westin

Transition to turbulence in laminar boundary layers subjected to high levels of free stream turbulence (FST) can still not be reliably predicted, despite its technical importance, e.g. in the case of boundary layers developing on gas turbine blades. In a series of experiments in the MTL-wind tunnel at KTH the influence of grid-generated FST on boundary layer transition has been studied, with FST-levels up to 6%. It was shown from both flow visualisation and hot-wire measurements that the boundary layer develops unsteady streaky structures with high and low streamwise velocity. This leads to large amplitude low frequency fluctuations inside the boundary layer although the mean flow is still close to the laminar profile. Breakdown to turbulence occurs through an instability of the streaks which leads to the formation of turbulent spots. Accurate physical modelling of these processes seems to be needed in order to obtain a reliable prediction method.


An experimental investigation has been made of turbulent boundary layer response to harmonic oscillations associated with a travelling wave imposed on an otherwise constant freestream velocity and convected in the freestream direction. The tests covered oscillation frequencies of 4-12 Hz for freestream amplitudes of up to 11% of the mean velocity. Additional steady flow measurements were used to infer the quasi-steady response to freestream oscillations. The results show a welcome insensitivity of the mean flow and turbulent intensity distributions to the freestream oscillations tested. An approximate analysis based on these results has been developed. It is probably of limited validity but it does provide a useful guide to the physical processes involved. The effects on boundary layer response of varying the travelling wave convection velocity and frequency of oscillation are illustrated by the analysis and show a behaviour broadly similar to that of laminar boundary layers. The travelling wave convection velocity exhibits a dominant influence on the turbulent boundary layer response to freestream oscillations.


1976 ◽  
Vol 27 (2) ◽  
pp. 87-98 ◽  
Author(s):  
J L Stollery

SummaryComparisons are made between some measurements of skin friction and heat transfer over five axisymmetric bodies and the predictions of a simple theory. The development of the theory is outlined and explicit expressions obtained for all the gross turbulent boundary-layer characteristics (δ*,θ,H,Cf and St).


1998 ◽  
Vol 359 ◽  
pp. 329-356 ◽  
Author(s):  
H. H. FERNHOLZ ◽  
D. WARNACK

The effects of a favourable pressure gradient (K[les ]4×10−6) and of the Reynolds number (862[les ]Reδ2[les ]5800) on the mean and fluctuating quantities of four turbulent boundary layers were studied experimentally and are presented in this paper and a companion paper (Part 2). The measurements consist of extensive hot-wire and skin-friction data. The former comprise mean and fluctuating velocities, their correlations and spectra, the latter wall-shear stress measurements obtained by four different techniques which allow testing of calibrations in both laminar-like and turbulent flows for the first time. The measurements provide complete data sets, obtained in an axisymmetric test section, which can serve as test cases as specified by the 1981 Stanford conference.Two different types of accelerated boundary layers were investigated and are described: in this paper (Part 1) the fully turbulent, accelerated boundary layer (sometimes denoted laminarescent) with approximately local equilibrium between the production and dissipation of the turbulent energy and with relaxation to a zero pressure gradient flow (cases 1 and 3); and in Part 2 the strongly accelerated boundary layer with ‘inactive’ turbulence, laminar-like mean flow behaviour (relaminarized), and reversion to the turbulent state (cases 2 and 4). In all four cases the standard logarithmic law fails but there is no single parametric criterion which denotes the beginning or the end of this breakdown. However, it can be demonstrated that the departure of the mean-velocity profile is accompanied by characteristic changes of turbulent quantities, such as the maxima of the Reynolds stresses or the fluctuating value of the skin friction.The boundary layers described here are maintained in the laminarescent state just up to the beginning of relaminarization and then relaxed to the turbulent state in a zero pressure gradient. The relaxation of the turbulence structure occurs much faster than in an adverse pressure gradient. In the accelerating boundary layer absolute values of the Reynolds stresses remain more or less constant in the outer region of the boundary layer in accordance with the results of Blackwelder & Kovasznay (1972), and rise both in the vincinity of the wall in conjunction with the rising wall shear stress and in the centre region of the boundary layer with the increase of production.


Author(s):  
J. C. Gibbings ◽  
S. M. Al-Shukri

This paper reports experimental measurements of two-dimensional turbulent boundary layers over sandpaper surfaces under turbulent streams to complement the Nikuradse experiments on pipe flow. The study included the recovery region downstream of the end of transition. Correlations are given for the thickness, the shape factor, the skin friction and the parameters of the velocity profile of the layer. Six further basic differences from the pipe flow are described to add to the five previously reported.


Author(s):  
G. A. Gerolymos ◽  
Y. N. Kallas ◽  
K. D. Papailiou

The turbulent normal fluctuation terms have been found from measurements to be very important, when approaching separation, inside the separated flow region, as well as, in the region where a shock wave interacts with a turbulent boundary layer. In the present work correlations are developped on the basis of available experimental results, which relate the normal fluctuation terms, appearing in integral formulations for turbulent boundary layer calculation methods, to mean flow quantities. These correlations are valid, as far as compressible attached or separated turbulent boundary layers are concerned, as well as in the case of a shock wave/turbulent boundary layer interaction which leads to boundary layer separation. Furthermore, correlations are developed for the maxima of the velocity fluctuation terms.


Author(s):  
Pascal Bader ◽  
Manuel Pschernig ◽  
Wolfgang Sanz ◽  
Jakob Woisetschläger ◽  
Franz Heitmeir ◽  
...  

Flow in turbomachines is generally highly turbulent. The boundary layers, however, often exhibit laminar-to-turbulent transition. But also relaminarization of the turbulent flow may occur. The state of the boundary layer is important, since it strongly influences transport phenomena like skin friction and heat transfer. It is therefore vitally important for the designer to understand the process of boundary layer transition and to determine the position of transition onset and the length of the transitional region. In order to get into the details of transition and relaminarization it is helpful to study simplified test cases first. Therefore, in this paper a relaminarization test case for a simple geometry is investigated: The boundary layer flow along a flat plate is exposed to acceleration with three different acceleration parameters, which is known as a crucial parameter for relaminarization. Measurements were performed for the inlet free-stream velocities of 5 m/s and 9 m/s. Several experimental techniques for detecting transition were tested at the institute before their application. In this work, Laser-Doppler anemometry (LDA) measurements were performed, since this optical technique is non-intrusive and does not disturb the flow. Therefore it can also be used in narrow flow passages where probe blockage can be crucial. As an outcome of this study, an insight into the process of relaminarization is presented. Although the key onset values for relaminarization stated in literature are fulfilled with the test setup, full relaminarization over the whole boundary layer has not been achieved. It seems, that using only the skin friction as indicator for relaminarization is not sufficient.


1986 ◽  
Vol 108 (2) ◽  
pp. 127-140 ◽  
Author(s):  
P. R. Bandyopadhyay

Recent developments in methods of reducing drag in turbulent boundary layers have been briefly reviewed. The behavior of the mean flow in several drag reducing boundary-layer flows of current interest, viz., those over longitudinal surface riblets, outer-layer devices (OLD’s), and longitudinal convex surface curvature, has been examined. The boundary layer on a surface with longitudinal concave curvature has been studied to complement the results of convex curvature. The riblets alter the flow in their vicinity only and cause no drag penalty. However, the OLD’s disturb the entire boundary layer, and it is the slow downstream (≃150 δ0) relaxation back to the equilibrium state that produces a region of lower skin friction; a net drag reduction results when the wall-drag reduction exceeds the drag penalty due to the device. The net drag reduction achieved by the riblets and OLD’s remains a modest 10 percent compared with the more spectacular levels reached by polymer addition and microbubble injection in water. Over mild convex curvatures, the outer-boundary-layer response is a function of the curvature ratio (δ0/R), and the relaxation rate after a length of convex curvature is a function of the curved length ratio (Δs0/δi). Boundary layers exhibit an asymmetric response to streamwise surface curvatures; the response is slower to a concave curvature than to a convex. Detailed turbulence and accurate wall shear stress measurements in the altered boundary layers are needed to understand the drag-reducing mechanisms involved.


Sign in / Sign up

Export Citation Format

Share Document