large roughness
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Takuma Itoh ◽  
Asuka Miura ◽  
Ken-ichi Uchida ◽  
Hideto YANAGIHARA

Abstract The spin Peltier effect (SPE) in Pt/Fe3O4 hybrid structures with epitaxial Fe3O4 layers synthesized by reactive sputtering using two different process gases, Ar/O2 and Kr/O2, was investigated. The magnitude of the SPE-induced temperature modulation for the Fe3O4 film grown using Kr/O2 was approximately 40% larger than that grown using Ar/O2 despite almost the same crystalline structures and magnetic and electric properties of the films. The enhancement of the SPE signal for the film grown with Kr/O2 can be attributed to an increase in the spin current injected into the Fe3O4 film owing to its large roughness.


2021 ◽  
Vol 931 ◽  
Author(s):  
Xiao Yu ◽  
Johanna H. Rosman ◽  
James L. Hench

In the coastal ocean, interactions of waves and currents with large roughness elements, similar in size to wave orbital excursions, generate drag and dissipate energy. These boundary layer dynamics differ significantly from well-studied small-scale roughness. To address this problem, we derived spatially and phase-averaged momentum equations for combined wave–current flows over rough bottoms, including the canopy layer containing obstacles. These equations were decomposed into steady and oscillatory parts to investigate the effects of waves on currents, and currents on waves. We applied this framework to analyse large-eddy simulations of combined oscillatory and steady flows over hemisphere arrays (diameter $D$ ), in which current ( $U_c$ ), wave velocity ( $U_w$ ) and period ( $T$ ) were varied. In the steady momentum budget, waves increase drag on the current, and this is balanced by the total stress at the canopy top. Dispersive stresses from oscillatory flow around obstacles are increasingly important as $U_w/U_c$ increases. In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure gradient, added-mass and form drag forces; stress gradients are small compared to other terms. Form drag is increasingly important as the Keulegan–Carpenter number $KC=U_wT/D$ and $U_c/U_w$ increase. Decomposing the drag term illustrates that a quadratic relationship predicts the observed dependences of steady and oscillatory drag on $U_c/U_w$ and $KC$ . For large roughness elements, bottom friction is well represented by a friction factor ( $f_w$ ) defined using combined wave and current velocities in the canopy layer, which is proportional to drag coefficient and frontal area per unit plan area, and increases with $KC$ and $U_c/U_w$ .


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1520
Author(s):  
Sirui Cheng ◽  
Jiang Ma ◽  
Feng Gong ◽  
Jun Shen

The poor thermoplastic formability of reactive Zr-based bulk metallic glass becomes the main limiting factor for replacing the noble-metal-based and Be-rich bulk metallic glasses in nanostructure fabrication. In our work, a (Zr50.7Cu28Ni9Al12.3)98.5Y1.5 bulk metallic glass with good thermoplastic formability has been developed by alloying, where Y addition enlarges the processing window and decreases the viscous resistance of supercooled liquid caused by the high free volume density. The prepared Zr-Cu-Ni-Al-Y bulk metallic glass nanostructure retains the amorphous characteristic and generates the complex oxidization products in the surface layer. The enhanced hydrophilicity of the as-embossed surface follows a Wenzel-impregnating wetting regime, and it can be attributed to the large roughness coefficient induced by the capillary effect. This study provides a low-cost and environmentally friendly bulk metallic glass system to manufacture the nanostructure with a broad prospect in the field of electrocatalysis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bencang Cui ◽  
Fengbo Sun ◽  
Qian Ding ◽  
Huining Wang ◽  
Yuanhua Lin ◽  
...  

Although efforts have been put into the research in polymer-infiltrated ceramic network composites (PICNs), data are needed to understand the relationship between surface roughness and flexural strength. In this work, a novel dental restorative composite was fabricated via infiltrating mixtures of Bis-GMA/TEGDMA and UDMA/TEGDMA into partially sintered porous sodium aluminum silicate blocks and curing. Bars with different surface conditions were produced by sanding with abrasive and polishing. Flexural strength was measured using three-point-bending. Scanning electron microscopy (SEM) was employed to observe the microstructure of surface areas. One-way analysis of variance was applied for statistical calculations, with p < 0.05 being considered significant. Weibull plots were used to evaluate the reliability of flexural strength. The results demonstrated that the flexural strength of the resultant composites was affected by the scratch direction and the value of roughness. The flexural strength increased with decrease of surface roughness. A higher strength value was found for parallel types than for vertical types with nearly the same surface roughness. A large roughness value and a scratch direction perpendicular to tensile stress produced a low Weibull modulus. Of particular importance with this work is that these factors should be taken into consideration when using PICNs as dental restorative composites.


2020 ◽  
pp. 089270572093913
Author(s):  
Kunpeng Du ◽  
Jin Huang ◽  
Cha Li ◽  
Jing Chen ◽  
Youbing Li ◽  
...  

With the application of hot-pressing technology, polyamide 6 (PA6) was successfully directly adhered to the aluminum alloy. The relationship between the bonding property and microstructures of PA6 and anodized AA5754 aluminum alloy hybrid were explored in the paper. The results showed that the honeycomb-like porous oxide film was prepared by anodic oxidation, which resulted in the decreased surface energy of the aluminum alloy, so that PA6 easily wetted on the aluminum alloy surface, and the maximum tensile shear strength and fracture work reached 8.24 MPa and 9.27 kJ m−2, respectively. Improved bonding strength was attributed to micro- and nanoscale honeycomb-like microstructures and large roughness on the anodized aluminum alloy surface.


Author(s):  
Santosh Kumar Singh ◽  
Pankaj Kumar Raushan ◽  
Koustuv Debnath ◽  
B. S. Mazumder

In this paper, detailed experimental results are reported to study the effect of the surface wave of different frequencies on unidirectional current over the bed-mounted train of rib roughness. The model roughness used in this study is transverse square ribs that lengthened across the entire width of the recirculating wave channel. The center-to-center rib pitch (P) was constant during the experiments, thus generating a broad range of near-bed flow patterns for each of the three different surface wave frequencies studied here. The relative submergence associated with the roughness height (k) was 8, which fall in the category of large roughness. Velocity measurements were conducted using acoustic Doppler velocimeter (ADV), and a surface wave of different frequencies was generated using the plunger-type wavemaker. The measured velocity data were analyzed to determine the relative importance of mean flow over the train of rib roughness. Mean velocity profiles illustrate the well-known downward shift from the flat surface data of the semi-logarithmic portion of the law of the wall. The width of the turbulent boundary layer increases with the superposition of surface wave compared to that of the current-only flow. The results also show that the mean reattachment length decreases due to the superposition of surface wave on unidirectional current.


Sign in / Sign up

Export Citation Format

Share Document