Pressure structure functions and spectra for locally isotropic turbulence

1995 ◽  
Vol 296 ◽  
pp. 247-269 ◽  
Author(s):  
Reginald J. Hill ◽  
James M. Wilczak

Beginning with the known relationship between the pressure structure function and the fourth-order two-point correlation of velocity derivatives, we obtain a new theory relating the pressure structure function and spectrum to fourth-order velocity structure functions. This new theory is valid for all Reynolds numbers and for all spatial separations and wavenumbers. We do not use the joint Gaussian assumption that was used in previous theory. The only assumptions are local homogeneity, local isotropy, incompressibility, and use of the Navier–Stokes equation. Specific formulae are given for the mean-squared pressure gradient, the correlation of pressure gradients, the viscous range of the pressure structure function, and the pressure variance. Of course, pressure variance is a descriptor of the energy-containing range. Therefore, for any Reynolds number, the formula for pressure variance requires the more restrictive assumption of isotropy. For the case of large Reynolds numbers, formulae are given for the inertial range of the pressure structure function and spectrum and of the pressure-gradient correlation; these are valid on the basis of local isotropy, as are the formulae for mean-squared pressure gradient and the viscous range of the pressure structure function. Using the experimentally verified extension to fourth-order velocity structure functions of Kolmogorov's theory, we obtain r4/3 and k−7/3 laws for the inertial range of the pressure structure function and spectrum. The modifications of these power laws to account for the effects of turbulence intermittency are also given. New universal constants are defined; these require experimental evaluation. The pressure structure function is sensitive to slight departures from local isotropy, implying stringent conditions on experimental data, but applicability of the previous theory is likewise constrained. The results are also sensitive to compressibility.

2008 ◽  
Vol 602 ◽  
pp. 287-302 ◽  
Author(s):  
P. A. DAVIDSON ◽  
P.-Å. KROGSTAD

In the limit of vanishing viscosity, ν→0, Kolmogorov's two-thirds, 〈(Δυ)2〉~ε2/3r2/3, and five-thirds, E~ε2/3k−5/3, laws are formally equivalent. (Here 〈(Δυ)2〉 is the second-order structure function, ε the dissipation rate, r the separation in physical space, E the three-dimensional energy spectrum, and k the wavenumber.) However, for the Reynolds numbers encountered in terrestrial experiments, or numerical simulations, it is invariably easier to observe the five-thirds law. We ask why this should be. To this end, we create artificial fields of isotropic turbulence composed of a random sea of Gaussian eddies whose size and energy distribution can be controlled. We choose the energy of eddies of scale, s, to vary as s2/3, in accordance with Kolmogorov's 1941 law, and vary the range of scales, γ=smax/smin, in any one realization from γ=25 to γ=800. This is equivalent to varying the Reynolds number in an experiment from Rλ=60 to Rλ=600. We find that, while there is some evidence of a five-thirds law for γ>50; (Rλ>100), the two-thirds law only starts to become apparent when γ approaches 200 (Rλ~240). The reason for this discrepancy is that the second-order structure function is a poor filter, mixing information about energy and enstrophy, and from scales larger and smaller than r. In particular, in the inertial range, 〈(Δυ)2〉 takes the form of a mixed power law, a1 + a2r2 + a3r2/3, where a2r2 tracks the variation in enstrophy and a3r2/3 the variation in energy. These findings are shown to be consistent with experimental data where the ‘pollution’ of the r2/3 law by the enstrophy contribution, a2r2, is clearly evident. We show that higher-order structure functions (of even order) suffer from a similar deficiency.


1997 ◽  
Vol 353 ◽  
pp. 67-81 ◽  
Author(s):  
REGINALD J. HILL

The equation relating second- and third-order velocity structure functions was presented by Kolmogorov; Monin attempted to derive that equation on the basis of local isotropy. Recently, concerns have been raised to the effect that Kolmogorov's equation and an ancillary incompressibility condition governing the third-order structure function were proven only on the restrictive basis of isotropy and that the statistic involving pressure that appears in the derivation of Kolmogorov's equation might not vanish on the basis of local isotropy. These concerns are resolved. In so doing, results are obtained for the second- and third-order statistics on the basis of local homogeneity without use of local isotropy. These results are applicable to future studies of the approach toward local isotropy. Accuracy of Kolmogorov's equation is shown to be more sensitive to anisotropy of the third-order structure function than to anisotropy of the second-order structure function. Kolmogorov's 4/5 law for the inertial range of the third-order structure function is obtained without use of the incompressibility conditions on the second- and third-order structure functions. A generalization of Kolmogorov's 4/5 law, which applies to the inertial range of locally homogeneous turbulence at very large Reynolds numbers, is shown to also apply to the energy-containing range for the more restrictive case of stationary, homogeneous turbulence. The variety of derivations of Kolmogorov's and Monin's equations leads to a wide range of applicability to experimental conditions, including, in some cases, turbulence of moderate Reynolds number.


2002 ◽  
Vol 468 ◽  
pp. 317-326 ◽  
Author(s):  
REGINALD J. HILL

Equations that follow from the Navier–Stokes equation and incompressibility but with no other approximations are ‘exact’. Exact equations relating second- and third- order structure functions are studied, as is an exact incompressibility condition on the second-order velocity structure function. Opportunities for investigations using these equations are discussed. Precisely defined averaging operations are required to obtain exact averaged equations. Ensemble, temporal and spatial averages are all considered because they produce different statistical equations and because they apply to theoretical purposes, experiment and numerical simulation of turbulence. Particularly simple exact equations are obtained for the following cases: (i) the trace of the structure functions, (ii) DNS that has periodic boundary conditions, and (iii) an average over a sphere in r-space. Case (iii) introduces the average over orientations of r into the structure-function equations. The energy dissipation rate ε appears in the exact trace equation without averaging, whereas in previous formulations ε appears after averaging and use of local isotropy. The trace mitigates the effect of anisotropy in the equations, thereby revealing that the trace of the third-order structure function is expected to be superior for quantifying asymptotic scaling laws. The orientation average has the same property.


2008 ◽  
Vol 15 (6) ◽  
pp. 915-929 ◽  
Author(s):  
J. M. Vindel ◽  
C. Yagüe ◽  
J. M. Redondo

Abstract. Data from the SABLES98 experimental campaign (Cuxart et al., 2000) have been used in order to study the relationship of the probability distribution of velocity increments (PDFs) to the scale and the degree of stability. This connection is demonstrated by means of the velocity structure functions and the PDFs of the velocity increments. Using the hypothesis of local similarity, so that the third order structure function scaling exponent is one, the inertial range in the Kolmogorov sense has been identified for different conditions, obtaining the velocity structure function scaling exponents for several orders. The degree of intermittency in the energy cascade is measured through these exponents and compared with the forcing intermittency revealed through the evolution of flatness with scale. The role of non-homogeneity in the turbulence structure is further analysed using Extended Self Similarity (ESS). A criterion to identify the inertial range and to show the scale independence of the relative exponents is described. Finally, using least-squares fits, the values of some parameters have been obtained which are able to characterize intermittency according to different models.


2003 ◽  
Vol 475 ◽  
pp. 173-203 ◽  
Author(s):  
L. MYDLARSKI

Statistics of the mixed velocity–passive scalar field and its Reynolds number dependence are studied in quasi-isotropic decaying grid turbulence with an imposed mean temperature gradient. The turbulent Reynolds number (using the Taylor microscale as the length scale), Rλ, is varied over the range 85 [les ] Rλ [les ] 582. The passive scalar under consideration is temperature in air. The turbulence is generated by means of an active grid and the temperature fluctuations result from the action of the turbulence on the mean temperature gradient. The latter is created by differentially heating elements at the entrance to the wind tunnel plenum chamber. The mixed velocity–passive scalar field evolves slowly with Reynolds number. Inertial-range scaling exponents of the co-spectra of transverse velocity and temperature, Evθ(k1), and its real-space analogue, the ‘heat flux structure function,’ 〈Δv(r)Δθ(r)〉, show a slow evolution towards their theoretical predictions of −7/3 and 4/3, respectively. The sixth-order longitudinal mixed structure functions, 〈(Δu(r))2(Δθ(r))4〉, exhibit inertial-range structure function exponents of 1.36–1.52. However, discrepancies still exist with respect to the various methods used to estimate the scaling exponents, the value of the scalar intermittency exponent, μθ, and the effects of large-scale phenomena (namely shear, decay and turbulent production of 〈θ2〉) on 〈(Δu(r))2(Δθ(r))4〉. All the measured fine-scale statistics required to be zero in a locally isotropic flow are, or tend towards, zero in the limit of large Reynolds numbers. The probability density functions (PDFs) of Δv(r)Δθ(r) exhibit roughly exponential tails for large separations and super-exponential tails for small separations, thus displaying the effects of internal intermittency. As the Reynolds number increases, the PDFs become symmetric at the smallest scales – in accordance with local isotropy. The expectation of the transverse velocity fluctuation conditioned on the scalar fluctuation is linear for all Reynolds numbers, with slope equal to the correlation coefficient between v and θ. The expectation of (a surrogate of) the Laplacian of the scalar reveals a Reynolds number dependence when conditioned on the transverse velocity fluctuation (but displays no such dependence when conditioned on the scalar fluctuation). This former Reynolds number dependence is consistent with Taylor’s diffusivity independence hypothesis. Lastly, for the statistics measured, no violations of local isotropy were observed.


2001 ◽  
Vol 434 ◽  
pp. 379-388 ◽  
Author(s):  
REGINALD J. HILL

Exact equations are given that relate velocity structure functions of arbitrary order with other statistics. ‘Exact’ means that no approximations are used except that the Navier–Stokes equation and incompressibility condition are assumed to be accurate. The exact equations are used to determine the structure function equations of all orders for locally homogeneous but anisotropic turbulence as well as for the locally isotropic case. The uses of these equations for investigating the approach to local homogeneity as well as to local isotropy and the balance of the equations and identification of scaling ranges are discussed. The implications for scaling exponents and investigation of intermittency are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document