Unicellular natural circulation in a shallow horizontal porous layer heated from below by a constant flux

1995 ◽  
Vol 294 ◽  
pp. 231-257 ◽  
Author(s):  
S. Kimura ◽  
M. Vynnycky ◽  
F. Alavyoon

Natural convection in a saturated horizontal porous layer heated from below and cooled at the top with a constant flux is studied both analytically and numerically. Linear stability analysis indicates that unicellular recirculation remains a stable mode of flow as the aspect ratio (A) of the layer is increased, in contrast to the situation for an isothermally heated and cooled layer. An analytical solution is presented for fully developed counterflow in the infinite-aspect-ratio limit; this flow is found to be linearly stable to transverse disturbances for Rayleigh number (Ra) as high as 506, at which point a Hopf bifurcation sets in; however, further analysis indicates that an exchange of stability due to longitudinal disturbances will occur much sooner at Ra ≈ 311.53. The velocity and temperature profiles of the counterflow solution, whilst not strictly speaking valid in the extreme end regions of the layer, otherwise agree very well with full numerical computations conducted for the ranges 25 [les ] Ra [les ] 1050, 2 [les ] A [les ] 10. However, for sufficiently high Rayleigh number (Ra between 630 and 650 for A = 8 and Ra between 730 and 750 for A = 4, for example), the computations indicate transition from steady unicellular to oscillatory flow, in line with the Hopf bifurcation predicted by the linear stability analysis for infinite aspect ratio.

2018 ◽  
Vol 192 ◽  
pp. 892-905 ◽  
Author(s):  
Saikrishna Nadella ◽  
Abhishek Kumar Srivastava ◽  
Naresh Kumar Maheshwari

Author(s):  
Wei He ◽  
Anton Burtsev ◽  
Vassilis Theofilis ◽  
Kai Zhang ◽  
Kunihiko Taira ◽  
...  

2013 ◽  
Vol 736 ◽  
pp. 464-494 ◽  
Author(s):  
P. Pearce ◽  
J. Daou

AbstractWe investigate the Rayleigh–Bénard convection problem within the context of a diffusion flame formed in a horizontal channel where the fuel and oxidizer concentrations are prescribed at the porous walls. This problem seems to have received no attention in the literature. When formulated in the low-Mach-number approximation the model depends on two main non-dimensional parameters, the Rayleigh number and the Damköhler number, which govern gravitational strength and reaction speed respectively. In the steady state the system admits a planar diffusion flame solution; the aim is to find the critical Rayleigh number at which this solution becomes unstable to infinitesimal perturbations. In the Boussinesq approximation, a linear stability analysis reduces the system to a matrix equation with a solution comparable to that of the well-studied non-reactive case of Rayleigh–Bénard convection with a hot lower boundary. The planar Burke–Schumann diffusion flame, which has been previously considered unconditionally stable in studies disregarding gravity, is shown to become unstable when the Rayleigh number exceeds a critical value. A numerical treatment is performed to test the effects of compressibility and finite chemistry on the stability of the system. For weak values of the thermal expansion coefficient $\alpha $, the numerical results show strong agreement with those of the linear stability analysis. It is found that as $\alpha $ increases to a more realistic value the system becomes considerably more stable, and also exhibits hysteresis at the onset of instability. Finally, a reduction in the Damköhler number is found to decrease the stability of the system.


Sign in / Sign up

Export Citation Format

Share Document