The effect of vortex pairing on particle dispersion and kinetic energy transfer in a two-phase turbulent shear layer

1995 ◽  
Vol 302 ◽  
pp. 149-178 ◽  
Author(s):  
Kenneth T. Kiger ◽  
Juan C. Lasheras

The transport of heavy, polydispersed particles and the inter-phase transfer of kinetic energy due to the viscous drag forces is measured experimentally in a turbulent shear layer. To study the effect of the large-scale vortex pairing event, the shear layer is forced simultaneously with a fundarmental and subharmonic perturbation. It is shown that vortex pairing plays a homogenizing role on the particulate field, but hte amount of homogenization is strongly dependent upon the particle's viscous relaxtion time, the eddy turnover time, as well as the time the particles interact with each scale prior to a pairing event. Thus, even though the smaller size particles become well-mixed across the large eddies, the larger sizes are still dispersed in an inhormogeneous fashion. It is also found that the kinetic energy transfer between the phases occurs inhomogeneously with energy being exchanged predominantly in a sublayer just outside the region of maximum turbulence intensity. The kinetic energy transfer is shown to exhibit notable positive and negative peaks located beneath the cores and stagnation points of the large-scale eddy field, and these peaks are shown to result from the irrotational velocity perturbations created by the vortices. This energy exchange mechanism remains a prominent process as long as the Stokes number of the particles relative to the vortices is of order unity.

2021 ◽  
Vol 927 ◽  
Author(s):  
Tomoaki Watanabe ◽  
Koji Nagata

Implicit large eddy simulation is performed to investigate large-scale characteristics of a temporally evolving, stably stratified turbulent shear layer arising from the Kelvin–Helmholtz instability. The shear layer at late time has two energy-containing length scales: the scale of the shear layer thickness, which characterizes large-scale motions (LSM) of the shear layer; and the larger streamwise scale of elongated large-scale structures (ELSS), which increases with time. The ELSS forms in the middle of the shear layer when the Richardson number is sufficiently large. The contribution of the ELSS to velocity and density variances becomes relatively important with time although the LSM dominate the momentum and density transport. The ELSS have a highly anisotropic Reynolds stress, to a degree similar to the near-wall region of turbulent boundary layers, while the Reynolds stress of the LSM is as anisotropic as in the outer region. Peaks in the spectral energy density associated with the ELSS emerge because of the slow decay of turbulence at very large scales. A forward interscale energy transfer from large to small scales occurs even at a small buoyancy Reynolds number. However, an inverse transfer also occurs for the energy of spanwise velocity. Negative production of streamwise velocity and density spectra, i.e. counter-gradient transport of momentum and density, is found at small scales. These behaviours are consistent with channel flows, indicating similar flow dynamics in the stratified shear layer and wall-bounded shear flows. The structure function exhibits a logarithmic law at large scales, implying a $k^{-1}$ scaling of energy spectra.


1985 ◽  
Vol 150 ◽  
pp. 281-309 ◽  
Author(s):  
H. E. Fiedler ◽  
P. Mensing

The influence of periodic excitation on a plane turbulent one-stream shear layer with turbulent separation was investigated. For the qualitative study flow visualization was employed. Quantitative data were obtained with hot-wire anemometry and spectrum analysis. It was found that sinusoidal perturbations with frequencies of order f0 [lsim ] u0/100θ0 (depending on excitation strength), introduced at the trailing edge are always amplified. Maximum amplification factors are observed for the lowest perturbation levels. The frequency and amplitude of excitation determine the downstream location of the amplification maximum in the flow. At sufficient amplitude two-dimensional vortices are formed which subsequently decay without pairing. The development of the periodic r.m.s. values along x follows a universal curve for all frequencies and amplitudes when properly normalized.At high excitation amplitudes the flow development depends strongly on the geometrical conditions of the excitation arrangement at the trailing edge. Thus regular vortex pairing as well as suppression of pairing can be achieved.The excited shear layer has considerably stronger, yet nonlinear, spread than the neutral. The region of vortex formation, irrespective of whether it includes pairing or not, is associated with a step-like increase in width, while after the position of maximum vortex energy, i.e. in the region of decay, the spread is reduced to values below the neutral. There the overall lateral fluctuation energy is increased, while the longitudinal may be decreased as compared with the neutral flow.


2010 ◽  
Vol 656 ◽  
pp. 51-81 ◽  
Author(s):  
B. VUKASINOVIC ◽  
Z. RUSAK ◽  
A. GLEZER

The effects of small-scale dissipative fluidic actuation on the evolution of large- and small-scale motions in a turbulent shear layer downstream of a backward-facing step are investigated experimentally. Actuation is applied by modulation of the vorticity flux into the shear layer at frequencies that are substantially higher than the frequencies that are typically amplified in the near field, and has a profound effect on the evolution of the vortical structures within the layer. Specifically, there is a strong broadband increase in the energy of the small-scale motions and a nearly uniform decrease in the energy of the large-scale motions which correspond to the most amplified unstable modes of the base flow. The near field of the forced shear layer has three distinct domains. The first domain (x/θ0 < 50) is dominated by significant concomitant increases in the production and dissipation of turbulent kinetic energy and in the shear layer cross-stream width. In the second domain (50 < x/θ0 < 300), the streamwise rates of change of these quantities become similar to the corresponding rates in the unforced flow although their magnitudes are substantially different. Finally, in the third domain (x/θ0 > 350) the inviscid instability of the shear layer re-emerges in what might be described as a ‘new’ baseline flow.


2018 ◽  
Vol 841 ◽  
pp. 581-613 ◽  
Author(s):  
Jianchun Wang ◽  
Minping Wan ◽  
Song Chen ◽  
Shiyi Chen

Kinetic energy transfer in compressible isotropic turbulence is studied using numerical simulations with solenoidal forcing at turbulent Mach numbers ranging from 0.4 to 1.0 and at a Taylor Reynolds number of approximately 250. The pressure dilatation plays an important role in the local conversion between kinetic energy and internal energy, but its net contribution to the average kinetic energy transfer is negligibly small, due to the cancellation between compression and expansion work. The right tail of probability density function (PDF) of the subgrid-scale (SGS) flux of kinetic energy is found to be longer at higher turbulent Mach numbers. With an increase of the turbulent Mach number, compression motions enhance the positive SGS flux, and expansion motions enhance the negative SGS flux. Average of SGS flux conditioned on the filtered velocity divergence is studied by numerical analysis and a heuristic model. The conditional average of SGS flux is shown to be proportional to the square of filtered velocity divergence in strong compression regions for turbulent Mach numbers from 0.6 to 1.0. Moreover, the antiparallel alignment between the large-scale strain and the SGS stress is observed in strong compression regions. The inter-scale transfer of solenoidal and compressible components of kinetic energy is investigated by Helmholtz decomposition. The SGS flux of solenoidal kinetic energy is insensitive to the change of turbulent Mach number, while the SGS flux of compressible kinetic energy increases drastically as the turbulent Mach number becomes larger. The compressible mode persistently absorbs energy from the solenoidal mode through nonlinear advection. The kinetic energy of the compressible mode is transferred from large scales to small scales through the compressible SGS flux, and is dissipated by viscosity at small scales.


Sign in / Sign up

Export Citation Format

Share Document