inviscid instability
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Redha A. Wahidi ◽  
Semih M. Olçmen

The effects of suction on the structure of a transitional bubble forming on a low-Reynolds-number airfoil are examined using the Reynolds-averaged Navier–Stokes and k–kL–ω transition model. The suction effects on the laminar and turbulent portions of the separation bubble and the locations of the main points in the separation bubble are discussed in relation to the transition process of the bubble. A single suction distribution located in the region of the baseline transitional bubble is used with two suction rates. One suction rate is sufficiently strong to eliminate the bubble from its original location and a lower suction rate that is only sufficient to create shallower bubbles. Eliminating the bubble from its original location maintains a laminar boundary layer downstream of the baseline transition location until a shallower separation bubble forms near the trailing edge. The lower suction rate shortens the separation bubble and reduces its height while approximately maintaining its original location. Analyzing the lengths of different portions of the bubble suggests that suction affects the instability growth rate and the nonlinear interactions in the separated shear layer. The lower suction rate shortens the distance between the separation and transition onset suggesting a higher growth rate of the inviscid instability. The higher suction rate, on the other hand, increases the distance between the separation and transition onset indicating a stabilizing effect by slowing down the growth rate of the inviscid instability. However, the percentage of distance between transition and separation to the total length is only slightly affected by the suction and the angle of attack.


2019 ◽  
Vol 874 ◽  
pp. 979-994
Author(s):  
Kengo Deguchi

Linear inviscid stability of general unidirectional flows sheared in one transverse direction has long been investigated by numerous researchers using the Rayleigh equation. However, unlike the simple shear flow considered in this equation, most physically relevant unidirectional flows vary in two transverse directions. Here the inviscid instability of such flows is studied by the large-Reynolds-number limit asymptotic analysis. We derive an a priori necessary condition for the existence of a limiting neutral mode, and develop a new numerical method to accurately capture singular neutral modes.


Author(s):  
Mateus Avanci ◽  
davi souza ◽  
Leonardo Santos de Brito Alves ◽  
Rômulo Bessi Freitas

2018 ◽  
Vol 845 ◽  
Author(s):  
Samuele Viaro ◽  
Pierre Ricco

The neutral curves of the boundary layer Görtler-vortex flow generated by free-stream disturbances, i.e., curves that distinguish the perturbation flow conditions of growth and decay, are computed through a receptivity study for different Görtler numbers, wavelengths, and low frequencies of the free-stream disturbance. The perturbations are defined as Klebanoff modes or strong and weak Görtler vortices, depending on their growth rate. The critical Görtler number below which the inviscid instability due to the curvature never occurs is obtained and the conditions for which only Klebanoff modes exist are thus revealed. A streamwise-dependent receptivity coefficient is defined and we discuss the impact of the receptivity on the $N$-factor approach for transition prediction.


2018 ◽  
Author(s):  
A. V. Boiko ◽  
S. V. Kirilovskiy ◽  
Yu. M. Nechepurenko ◽  
T. V. Poplavskaya

Sign in / Sign up

Export Citation Format

Share Document