Compressible plume dynamics and stability

1998 ◽  
Vol 369 ◽  
pp. 125-149 ◽  
Author(s):  
MARK PETER RAST

This paper presents a numerical study of the dynamics and stability of two-dimensional thermal plumes in a significantly stratified layer. Motivated by stellar envelope convection in which radiative cooling at the star's photosphere drives vigorous down flows, we examine cool plumes descending through an adiabatically stratified layer of increasing density with depth. Such flows are inaccessible by laboratory experiments, yet are important to the understanding of heat and momentum transport, magnetic field generation, and acoustic excitation in stars like the Sun. We find that the structure of thermal plumes in a stratified compressible medium is significantly different from that in an incompressible one, with pressure perturbations playing an important dynamical role. Additionally, we find that the plumes are subject to vigorous secondary instabilities even in a quiescent background medium. While the flows studied are not fully turbulent but transitional, the nature of the compressive instabilities and their influence on subsequent flow evolution suggests that advective detrainment of fluid from the plume region results. Simplified plume models assuming a hydrostatic pressure distribution and velocity-proportional entrainment may thus be inappropriate in this context.

1983 ◽  
Vol 102 ◽  
pp. 67-71
Author(s):  
W. Deinzer ◽  
G. Hensler ◽  
D. Schmitt ◽  
M. Schüssler ◽  
E. Weisshaar

We give a short summary of some results of a numerical study of magnetic field concentrations in the solar photosphere and upper convection zone. We have developed a 2D time dependent code for the full MHD equations (momentum equation, equation of continuity, induction equation for infinite conductivity and energy equation) in slab geometry for a compressible medium. A Finite-Element-technique is used. Convective energy transport is described by the mixing-length formalism while the diffusion approximation is employed for radiation. We parametrize the inhibition of convective heat flow by the magnetic field and calculate the material functions (opacity, adiabatic temperature gradient, specific heat) self-consistently. Here we present a nearly static flux tube model with a magnetic flux of ∼ 1018 mx, a depth of 1000 km and a photospheric diameter of ∼ 300 km as the result of a dynamical calculation. The influx of heat within the flux tube at the bottom of the layer is reduced to 0.2 of the normal value. The mass distribution is a linear function of the flux function A: dm(A)/dA = const. Fig. 1 shows the model: Isodensities (a), fieldlines (b), isotherms (c) and lines of constant continuum optical depth (d) are given. The “Wilson depression” (height difference between τ = 1 within and outside the tube) is ∼ 150 km and the maximum horizontal temperature deficit is ∼ 3000 K. Field strengths as function of x for three different depths and as function of depth along the symmetry axis are shown in (e) and (f), respectively. Note the sharp edge of the tube.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250030 ◽  
Author(s):  
FAYÇAL HAMMAMI ◽  
NADER BEN-CHEIKH ◽  
ANTONIO CAMPO ◽  
BRAHIM BEN-BEYA ◽  
TAIEB LILI

In this work, a numerical study devoted to the two-dimensional and three-dimensional flow of a viscous, incompressible fluid inside a lid-driven cavity is undertaking. All transport equations are solved using the finite volume formulation on a staggered grid system and multi-grid acceleration. Quantitative aspects of two and three-dimensional flows in a lid-driven cavity for Reynolds number Re = 1000 show good agreement with benchmark results. An analysis of the flow evolution demonstrates that, with increments in Re beyond a certain critical value Rec, the steady flow becomes unstable and bifurcates into unsteady flow. It is observed that the transition from steadiness to unsteadiness follows the classical Hopf bifurcation. The time-dependent velocity distribution is studied in detail and the critical Reynolds number is localized for both 2D and 3D cases. Benchmark solutions for 2D and 3D lid-driven cavity flows are performed for Re = 1500 and 6000.


2000 ◽  
Vol 412 ◽  
pp. 331-353 ◽  
Author(s):  
J. von HARDENBERG ◽  
J. C. McWILLIAMS ◽  
A. PROVENZALE ◽  
A. SHCHEPETKIN ◽  
J. B. WEISS

We study symmetric vortex merger in quasi-geostrophic flows using numerical simulations with high vertical resolution. We analyse the effect of varying the vertical aspect ratio of the vortices and compare with the barotropic case. During the merging of potential vorticity cores with small aspect ratio, we observe the birth of secondary instabilities on the filaments. This is a new phenomenon not seen in baroclinic simulations having low vertical resolution. Passive Lagrangian tracers are used to explore the transport of fluid parcels during vortex merger, to provide a detailed view of the flow evolution, and to determine the value of the critical merging distance for baroclinic vortices.


Author(s):  
Scott K. Beinke ◽  
Justin S. Hardi ◽  
Daniel T. Banuti ◽  
Sebastian Karl ◽  
Bassam B. Dally ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document