scholarly journals A numerical study of non-linear convection in a compressible medium

1980 ◽  
Vol 6 (4) ◽  
pp. 283-294 ◽  
Author(s):  
R. Van der Borght
Author(s):  
Dion Savio Antao ◽  
Bakhtier Farouk

A numerical study of non-linear, high amplitude standing waves in non-cylindrical circular resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. A right circular cylinder and frustum of cone are the two geometries studied. The model is validated using past numerical and experimental results of standing waves in cylindrical resonators. The non-linear nature of the harmonic response of the frustum of cone resonator system is investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling.


2010 ◽  
Vol 4 (3) ◽  
pp. 359-372 ◽  
Author(s):  
G. J.-M. C. Leysinger Vieli ◽  
G. H. Gudmundsson

Abstract. The advance of a glacier over a deforming sediment layer is analysed numerically. We treat this problem as a contact problem involving two slowly-deforming viscous bodies. The surface evolution of the two bodies, and of the contact interface between them, is followed through time. Using various different non-linear till rheologies, we show how the mode of advance depends on the relative effective viscosities of ice and till. Three modes of advances are observed: (1) overriding, where the glacier advances through ice deformation only and without deforming the sediment; (2) plug-flow, where the sediment is strongly deformed, the ice moves forward as a block and a bulge is built in front of the glacier; and (3) mixed-flow, where the glacier advances through both ice and sediment deformation. For the cases of both overriding and mixed-flow, an inverse depth-age relationship within the ice is obtained. A series of model experiments show the contrast in effective viscosity between ice and till to be the single most important model parameter defining the mode of advance and the resulting thickness distribution of the till. Our model experiments indicate that the thickness of the deforming till layer is greatest close to the glacier front. Measurements of till thickness taken in such locations may not be representative of deforming till thickness elsewhere. Given sufficiently large contrast in effective viscosity between ice and till, a sediment bulge is formed in front of the glacier. During glacier advance, the bulge quickly reaches a steady state form strongly resembling single-crested push moraines. Inspection of particle paths within the sediment bulge, shows that particles within the till travel at a different speed from the bulge itself, and the push moraine to advance as a form-conserving non-linear wave.


Author(s):  
Svein Sævik ◽  
Martin Storheim ◽  
Erik Levold

MARINTEK has developed software for detailed analysis of pipelines during installation and operation. As part of the software development a new coating finite element was developed in cooperation with StatoilHydro enabling efficient analysis of field joint strain concentrations of long concrete coated pipeline sections. The element was formulated based on sandwich beam theory and application of the Principle of Potential Energy. Large deformations and non-linear geometry effects were handled by a Co-rotated “ghost” reference description where elimination of rigid body motion was taken care of by referring to relative displacements in the strain energy term. The non-linearity related to shear interaction and concrete material behaviour was handled by applying non-linear springs and a purpose made concrete material model. The paper describes the theoretical formulation and numerical studies carried out to verify the model. The numerical study included comparison between model and full-scale tests as well as between model and other commercial software. At last a 3000 m long pipeline was analysed to demonstrate the strain concentration behaviour of a concrete coated pipeline exposed to high temperature snaking on the seabed.


2013 ◽  
Vol 13 (04) ◽  
pp. 1350067 ◽  
Author(s):  
O. ANWAR BÉG ◽  
V. R. PRASAD ◽  
B. VASU

A mathematical model has been developed for steady-state boundary layer flow of a nanofluid past an impermeable vertical flat wall in a porous medium saturated with a water-based dilute nanofluid containing oxytactic microorganisms. The nanoparticles were distributed sufficiently to permit bioconvection. The product of chemotaxis constant and maximum cell swimming speed was assumed invariant. Using appropriate transformations, the partial differential conservation equations were non-dimensionalised to yield a quartet of coupled, non-linear ordinary differential equations for momentum, energy, nanoparticle concentration and dimensionless motile microorganism density, with appropriate boundary conditions. The dominant parameters emerging in the normalised model included the bioconvection Lewis number, bioconvection Peclet number, Lewis number, buoyancy ratio parameter, Brownian motion parameter, thermophoresis parameter, local Darcy-Rayleigh number and the local Peclet number. An implicit numerical solution to the well-posed two-point non-linear boundary value problem is developed using the well-tested and highly efficient Keller box method. Computations are validated with the Nakamura tridiagonal implicit finite difference method, demonstrating excellent agreement. Nanoparticle concentration and temperature were found to be generally enhanced through the boundary layer with increasing bioconvection Lewis number, whereas dimensionless motile microorganism density was only increased closer to the wall. Temperature, nanoparticle concentration and dimensionless motile microorganism density were all greatly increased with a rise in Peclet number. Temperature and dimensionless motile microorganism density were reduced with increasing buoyancy parameter, whereas nanoparticle concentration was increased. The present study found applications in the fluid mechanical design of microbial fuel cell and bioconvection nanotechnological devices.


Author(s):  
Vasilis Sarhosis ◽  
Gian Piero Lignola ◽  
Panagiotis G. Asteris

In this chapter, a numerical study to investigate the seismic vulnerability of the two storey colonnade of the Forum in Pompeii has been conducted. Software based on the Distinct Element Method (DEM) of analysis has been used. The colonnade was represented as an assemblage of distinct blocks connected together by zero thickness interfaces which could open and/or close depending on the magnitude and direction of stresses applied to them. Both static and non-linear static analyses have been undertaken. Also, a sensitivity study has been performed to investigate the effect of frictional resistance of the joints on the structural response of the colonnade. This was to simulate potential joint degradation effects and/or possible water lubrication at the joint.


2018 ◽  
Vol 28 (7) ◽  
pp. 075516 ◽  
Author(s):  
A. F. Peralta ◽  
A. Carro ◽  
M. San Miguel ◽  
R. Toral

1983 ◽  
Vol 102 ◽  
pp. 67-71
Author(s):  
W. Deinzer ◽  
G. Hensler ◽  
D. Schmitt ◽  
M. Schüssler ◽  
E. Weisshaar

We give a short summary of some results of a numerical study of magnetic field concentrations in the solar photosphere and upper convection zone. We have developed a 2D time dependent code for the full MHD equations (momentum equation, equation of continuity, induction equation for infinite conductivity and energy equation) in slab geometry for a compressible medium. A Finite-Element-technique is used. Convective energy transport is described by the mixing-length formalism while the diffusion approximation is employed for radiation. We parametrize the inhibition of convective heat flow by the magnetic field and calculate the material functions (opacity, adiabatic temperature gradient, specific heat) self-consistently. Here we present a nearly static flux tube model with a magnetic flux of ∼ 1018 mx, a depth of 1000 km and a photospheric diameter of ∼ 300 km as the result of a dynamical calculation. The influx of heat within the flux tube at the bottom of the layer is reduced to 0.2 of the normal value. The mass distribution is a linear function of the flux function A: dm(A)/dA = const. Fig. 1 shows the model: Isodensities (a), fieldlines (b), isotherms (c) and lines of constant continuum optical depth (d) are given. The “Wilson depression” (height difference between τ = 1 within and outside the tube) is ∼ 150 km and the maximum horizontal temperature deficit is ∼ 3000 K. Field strengths as function of x for three different depths and as function of depth along the symmetry axis are shown in (e) and (f), respectively. Note the sharp edge of the tube.


Sign in / Sign up

Export Citation Format

Share Document