scholarly journals Theoretical Studies of Ice Segregation in Soil

1966 ◽  
Vol 6 (44) ◽  
pp. 255-260 ◽  
Author(s):  
Kiyoshi Arakawa

Abstract The mathematical theory of heat conduction is applied to the analysis of ice segregation processes in soil. A diffusion equation is first employed for the flow of soil moisture. Two new quantities, the rate of ice segregation,σ and the segregation efficiency, E, are introduced. The first is the rate of ice growth measured as mass per area per time. The latter is defined as E = σL/(K 1 ∂T 1/∂x−K 2 ∂T 2/∂x), where L is the latent heat of fusion of ice, T 1and K 1are the temperature and thermal conductivity of frozen soil, and T 2 and K 2 are the temperature and thermal conductivity of unfrozen soil. Three types of soil freezing can be classified in terms of E: freezing of non-frost-susceptible soil (E = 0), perfect segregation (E = 1) and imperfect segregation (0 < E < 1). Finally, the mathematical boundary conditions at an advancing frost line are obtained in freezing, frost-susceptible soil (E ≠ 0). Two parameters related to the structure of soil are pointed out, which seem to be valid criteria of frost susceptibility. The amount of frost-heaving is derived under special conditions.

1966 ◽  
Vol 6 (44) ◽  
pp. 255-260
Author(s):  
Kiyoshi Arakawa

AbstractThe mathematical theory of heat conduction is applied to the analysis of ice segregation processes in soil. A diffusion equation is first employed for the flow of soil moisture. Two new quantities, the rate of ice segregation,σ and the segregation efficiency, E, are introduced. The first is the rate of ice growth measured as mass per area per time. The latter is defined as E = σL/(K1∂T1/∂x−K2∂T2/∂x), where L is the latent heat of fusion of ice, T1and K1are the temperature and thermal conductivity of frozen soil, and T2 and K2 are the temperature and thermal conductivity of unfrozen soil. Three types of soil freezing can be classified in terms of E: freezing of non-frost-susceptible soil (E = 0), perfect segregation (E = 1) and imperfect segregation (0 < E < 1). Finally, the mathematical boundary conditions at an advancing frost line are obtained in freezing, frost-susceptible soil (E ≠ 0). Two parameters related to the structure of soil are pointed out, which seem to be valid criteria of frost susceptibility. The amount of frost-heaving is derived under special conditions.


Author(s):  
Pau Gimenez-Gavarrell ◽  
Vincent D. Romanin ◽  
Sonia Fereres

Thermal Energy Storage (TES) can improve the efficient and economical use of available resources associated with renewable energies. The choice of Phase Change Materials (PCM) for TES applications is particularly attractive, since PCMs provide high energy storage densities, low costs, and allow energy storage at constant temperatures during the melting/solidification process. However, most commonly used PCMs have low thermal conductivity values, typically less than 1 W/mK. This leads to insufficient heat exchange rates in many applications, where power is as important as the amount of energy stored. Previous studies have shown that adding nanoparticles to molten salts can enhance the thermal conductivity and heat capacity, thus improving performance in TES systems. This study analyzes how adding nanoparticles to ionic liquids/solids affects the latent heat of fusion and melting temperature, critical characteristics of many thermal management systems. An important aspect of nanoparticle suspension preparation is the synthesis method, both from the point of view of scalability and effect on thermophysical properties. Several nanoparticle suspensions are synthesized with carbon nanotubes (CNT) and salt or ionic liquid base materials, using different synthesis methods and sonication times. The melting point and latent heat of fusion are measured for the base materials and nanoparticle suspensions using a Differential Scanning Calorimeter (DSC). The change in latent heat and melting temperature of the nanofluid with respect to the base fluid is shown to be present but not substantial. Possible explanations for the modification of thermal properties with respect to the base fluid are discussed.


1976 ◽  
Vol 13 (2) ◽  
pp. 127-138 ◽  
Author(s):  
R. J. Kettle ◽  
R. I. T. Williams

The paper describes a technique for measuring the pressure generated when heaving is restrained in a frozen soil, freezing being achieved by thermoelectric cooling. Although steps were taken to minimize side wall resistance between the specimen and the test mould significant under-estimation of the pressure was unavoidable and further work is necessary to accurately quantify the resistance.The tests were performed on specimens of unbound and cement stabilized colliery shale, both unburnt and burnt shales being studied. For the unbound shales, the largest heaving pressures were developed by the finer grained shales, and this supports the theoretical studies that have shown heaving pressure to be inversely proportional to pore size. Cement stabilization did not significantly affect the heaving pressure developed by the coarser grained shales but, with the finer grained shales, it reduced the pressure developed.Heave and heaving pressure are not uniquely related and, although relationships have been established between these parameters separately for burnt and for unburnt shale, the technique does not at present constitute an alternative to the frost heave test.The testing programme has shown, however, that thermoelectric devices provide a reliable and efficient means for freezing specimens and an experimental rig is suggested for using them in frost heave testing.


2011 ◽  
Vol 243-249 ◽  
pp. 89-92
Author(s):  
Shi Liang Xu

The Artificial Ground Freezing (AGF) Method play an important role in the geotechnical engineering and the back analysis of thermal conductivity of frozen soil is the main inverse heat conduction problem of temperature field. In this paper the physical modelling test of AGF is carried out with double-row-pipe freezing in the lab. According to the measured temperature, the back analysis of thermal conductivity of frozen soil is solved based on the two-dimensional finite element simulation and the least square principle. It is helpful to investigate the freezing process and determine the frozen wall thickness.


Author(s):  
Xiaobo Li ◽  
Hengzhi Wang ◽  
Hui Wang ◽  
Sohae Kim ◽  
Keivan Esfarjani ◽  
...  

Inorganic materials and organic salts are usually used as phase change materials (PCMs) for thermal energy storage. Some of these materials have high latent heat of fusion; however one major drawback of these materials is the low thermal conductivity, which limits the rate of charging and discharging process. In this paper, we studied metallic alloys (eutectic alloys or alloys with a narrow melting temperature range) as phase-change materials, which have both high thermal conductivity and high latent heat of fusion. A formula was presented from entropy change to predict the latent heat of fusion of metallic alloys. We found that the latent heat of fusion of alloys can be expressed from three different contributions: the latent heat from each element, the sensible heat, and the mixing entropy. From the theory we also showed that latent heat of fusion could be greatly increased by maximizing the entropy of mixing, which can be realized by introduce more elements in the alloys, i.e., form ternary alloys by adding elements to binary alloys. This idea is demonstrated by the synthesis and measurement of the binary alloy 87.8Al-12.2Si (at%) and ternary alloy 45Al-40Si-15Fe (at%). The metallic alloy is synthesized by hot pressing method. The latent heat of fusion of 45Al-40Si-15Fe (at%) is about 865 kJ/kg with melting temperature from 830 °C to 890 °C from the differential scanning calorimetry (DSC) measurement, comparing with 554.9 kJ/kg and 578.3 °C for the binary alloy 87.8Al-12.2Si (at%). From the binary to the ternary alloy, the contribution to the latent heat from mixing entropy increases by 17%.


2019 ◽  
Vol 140 (4) ◽  
pp. 1825-1836 ◽  
Author(s):  
Carlos González-Rivera ◽  
Anthony Harrup ◽  
Carla Aguilar ◽  
Adrián M. Amaro-Villeda ◽  
Marco A. Ramírez-Argáez

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fu-Qing Cui ◽  
Wei Zhang ◽  
Zhi-Yun Liu ◽  
Wei Wang ◽  
Jian-bing Chen ◽  
...  

The comprehensive understanding of the variation law of soil thermal conductivity is the prerequisite of design and construction of engineering applications in permafrost regions. Compared with the unfrozen soil, the specimen preparation and experimental procedures of frozen soil thermal conductivity testing are more complex and challengeable. In this work, considering for essentially multiphase and porous structural characteristic information reflection of unfrozen soil thermal conductivity, prediction models of frozen soil thermal conductivity using nonlinear regression and Support Vector Regression (SVR) methods have been developed. Thermal conductivity of multiple types of soil samples which are sampled from the Qinghai-Tibet Engineering Corridor (QTEC) are tested by the transient plane source (TPS) method. Correlations of thermal conductivity between unfrozen and frozen soil has been analyzed and recognized. Based on the measurement data of unfrozen soil thermal conductivity, the prediction models of frozen soil thermal conductivity for 7 typical soils in the QTEC are proposed. To further facilitate engineering applications, the prediction models of two soil categories (coarse and fine-grained soil) have also been proposed. The results demonstrate that, compared with nonideal prediction accuracy of using water content and dry density as the fitting parameter, the ternary fitting model has a higher thermal conductivity prediction accuracy for 7 types of frozen soils (more than 98% of the soil specimens’ relative error are within 20%). The SVR model can further improve the frozen soil thermal conductivity prediction accuracy and more than 98% of the soil specimens’ relative error are within 15%. For coarse and fine-grained soil categories, the above two models still have reliable prediction accuracy and determine coefficient (R2) ranges from 0.8 to 0.91, which validates the applicability for small sample soils. This study provides feasible prediction models for frozen soil thermal conductivity and guidelines of the thermal design and freeze-thaw damage prevention for engineering structures in cold regions.


Sign in / Sign up

Export Citation Format

Share Document