scholarly journals Fabric Analysis of Surface Ice near Casey Range, East Antarctica

1969 ◽  
Vol 8 (54) ◽  
pp. 375-383 ◽  
Author(s):  
Koshiro Kizaki

AbstractForbes Glacier, one of the outlet ice streams from the Antarctic ice sheet, is located 20 km west of Mawson, Mac.Robertson Land, east Antarctica. In the uppermost part of the glacier near Casey Range, the velocity at the centre of the glacier is 59 m year−1and the strain-rate at seven strain grids ranges from −6.7 to 6.7×10−3year−1on the surface of the glacier. The fabric types of this area are characterized by single-maximum and small-girdle fabrics. It is confirmed that the single-maximum fabric is an original pattern which changes gradually to a small girdle fabric about the maximum compressive axis in association with grain growth. The patterns predicted by Brace (1960) can be adapted to the small-girdle fabrics of this area.

1969 ◽  
Vol 8 (54) ◽  
pp. 375-383
Author(s):  
Koshiro Kizaki

AbstractForbes Glacier, one of the outlet ice streams from the Antarctic ice sheet, is located 20 km west of Mawson, Mac.Robertson Land, east Antarctica. In the uppermost part of the glacier near Casey Range, the velocity at the centre of the glacier is 59 m year−1 and the strain-rate at seven strain grids ranges from −6.7 to 6.7×10−3 year−1 on the surface of the glacier. The fabric types of this area are characterized by single-maximum and small-girdle fabrics. It is confirmed that the single-maximum fabric is an original pattern which changes gradually to a small girdle fabric about the maximum compressive axis in association with grain growth. The patterns predicted by Brace (1960) can be adapted to the small-girdle fabrics of this area.


1999 ◽  
Vol 29 ◽  
pp. 55-60 ◽  
Author(s):  
Qin Dahe ◽  
Paul A. Mayewski ◽  
Ren Jiawen ◽  
Xiao Cunde ◽  
Sun Junying

AbstractGlaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (>2000 m a.s.l.). This opinion is supported by the following. (1) The fluxes of sea-salt ions such as Na+, Mg2 + and CF display a decreasing trend from the west to the east of interior Antarctica. In |eneral, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease. For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector. (3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km. High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone. (4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend. Since calcium is mainly derived from crustal sources, and nssSO42- is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor.


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2017 ◽  
Vol 63 (240) ◽  
pp. 703-715 ◽  
Author(s):  
BAOJUN ZHANG ◽  
ZEMIN WANG ◽  
FEI LI ◽  
JIACHUN AN ◽  
YUANDE YANG ◽  
...  

ABSTRACTThis study explores an iterative method for simultaneously estimating the present-day glacial isostatic adjustment (GIA), ice mass change and elastic vertical crustal deformation of the Antarctic ice sheet (AIS) for the period October 2003–October 2009. The estimations are derived by combining mass measurements of the GRACE mission and surface height observations of the ICESat mission under the constraint of GPS vertical crustal deformation rates in the spatial domain. The influence of active subglacial lakes on GIA estimates are mitigated for the first time through additional processing of ICESat data. The inferred GIA shows that the strongest uplift is found in the Amundsen Sea Embayment (ASE) sector and subsidence mostly occurs in Adelie Terre and the East Antarctica inland. The total GIA-related mass change estimates for the entire AIS, West Antarctica Ice Sheet (WAIS), East Antarctica Ice Sheet (EAIS), and Antarctic Peninsula Ice Sheet (APIS) are 43 ± 38, 53 ± 24, −23 ± 29 and 13 ± 6 Gt a−1, respectively. The overall ice mass change of the AIS is −46 ± 43 Gt a−1 (WAIS: −104 ± 25, EAIS: 77 ± 35, APIS: −20 ± 6). The most significant ice mass loss and most significant elastic vertical crustal deformations are concentrated in the ASE and northern Antarctic Peninsula.


2016 ◽  
Author(s):  
Bianca Kallenberg ◽  
Paul Tregoning ◽  
Janosch F. Hoffmann ◽  
Rhys Hawkins ◽  
Anthony Purcell ◽  
...  

Abstract. Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It's often been assumed that changes in ice dynamic rates only need to be considered when assessing long term ice sheet mass balance; however, two decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about changes in ice dynamic rates are still limited, especially in East Antarctica. Without understanding ice dynamic rates it is not possible to properly assess changes in ice sheet mass balance, surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice dynamic rates by removing modelled rates of surface mass balance, firn compaction and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of ice dynamic rates by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction and ice dynamic rates can be modelled and correlate with observed elevation changes from satellite altimetry.


2018 ◽  
Author(s):  
Qiang Shen ◽  
Hansheng Wang ◽  
C. K. Shum ◽  
Liming Jiang ◽  
Hou Tse Hsu ◽  
...  

Abstract. Ice velocity constitutes a key parameter for estimating ice-sheet discharge rates and is crucial for improving coupled models of the Antarctic ice sheet to accurately predict its future fate and contribution to sea-level change. Here, we present a new Antarctic ice velocity map at a 100-m grid spacing inferred from Landsat 8 imagery data collected from December 2013 through March 2016 and robustly processed using the feature tracking method. These maps were assembled from over 73,000 displacement vector scenes inferred from over 32,800 optical images. Our maps cover nearly all the ice shelves, landfast ice, ice streams, and most of the ice sheet. The maps have an estimated uncertainty of less than 10 m yr-1 based on robust internal and external validations. These datasets will allow for a comprehensive continent-wide investigation of ice dynamics and mass balance combined with the existing and future ice velocity measurements and provide researchers access to better information for monitoring local changes in ice glaciers. Other uses of these datasets include control and calibration of ice-sheet modelling, developments in our understanding of Antarctic ice-sheet evolution, and improvements in the fidelity of projects investigating sea-level rise (https://doi.pangaea.de/10.1594/PANGAEA.895738).


2020 ◽  
Author(s):  
Ronja Reese ◽  
Anders Levermann ◽  
Torsten Albrecht ◽  
Hélène Seroussi ◽  
Ricarda Winkelmann

<p>Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea-level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams is the major reason for currently observed mass loss from Antarctica and is expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming, and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice-sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice-sheet models, the projected 21st century sea-level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.3 cm of sea-level equivalent in the ISMIP6 simulations where the sub-shelf melt sensitivity is comparably low, opposed to a likely range of 9.2 to 35.9 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity based on oceanographic studies. Furthermore, using two initial states, one with and one without a previous historic simulation from 1850 to 2014, we show that while differences between the ice-sheet configurations in 2015 are marginal, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by about 50%. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice-dynamic response for future sea-level projections.</p>


2020 ◽  
Author(s):  
Violaine Coulon ◽  
Kevin Bulthuis ◽  
Sainan Sun ◽  
Konstanze Haubner ◽  
Frank Pattyn

<p>The Antarctic ice sheet (AIS) lies on a solid Earth that displays large spatial variations in rheological properties, with a thin lithosphere and low-viscosity upper mantle (weak Earth structure) beneath West Antarctica and an opposing structure beneath East Antarctica. This contrast is known to have a significant impact on ice-sheet grounding-line stability. Here, we embedded a modified glacial-isostatic ELRA model within an Antarctic ice sheet model that considers a weak Earth structure for West Antarctica supplemented with an approximation of gravitationally-consistent local sea-level changes. By taking advantage of the computational efficiency of this elementary GIA model, we assess in a probabilistic way the impact of uncertainties in the Antarctic viscoelastic properties on the response of the Antarctic ice sheet to future warming by using an ensemble of 2000 Monte Carlo simulations that span a range of plausible solid Earth structures for both West and East Antarctica. <br>We show that on multicentennial-to-millennial timescales, model projections that do not consider the dichotomy between East and West Antarctic solid Earth structures systematically overestimate the sea-level contribution from the Antarctic ice sheet because regional solid-Earth deformation plays a significant role in promoting the stability of the West Antarctic ice sheet (WAIS). However, WAIS collapse cannot be prevented under high-emissions climate scenarios. At longer timescales and under unabated climate forcing, future mass loss may be underestimated because in East Antarctica, GIA feedbacks have the potential to re-enforce the influence of the climate forcing as compared with a spatially-uniform GIA model. In this context, the AIS response might be an even larger source of uncertainty in projecting sea-level rise than previously thought, with the highest uncertainty arising from the East Antarctic ice sheet where the Aurora Basin is very GIA-dependent.</p>


1969 ◽  
Vol 8 (53) ◽  
pp. 253-276 ◽  
Author(s):  
K. Kizaki

Attempts are made to test the relation predicted by Brace (1960) between strain-rates and the ice-fabric patterns obtained at Mawson station, east Antarctica. These orientation fabrics not only are hardly related to the prediction by Brace (1960) or Kamb (1959) but also change easily within a strain grid with 100m diagonals.Stable patterns of two- and three-maximum fabrics are confirmed. The latter is common and stable in the coarse ice at the surface of the ice sheet. It is apparent that the fabric patterns are generally related to the grain-size. The single-maximum fabric always occurs in fine-grained ice, then more maxima are formed in the course of grain growth.It appears that syntectonic-secondary recrystallization is effective in producing the orientation fabrics with two, three and multiple maxima. Also, the maxima always shift away from the pole of foliation as grain-size increases and there are several stable positions of maximum such as 0°, 17°, 23° and 30°. It is expected that further stable angles would occur with coarser crystals as found in temperate glaciers.


2021 ◽  
Author(s):  
Christine Siddoway ◽  
Stuart Thomson ◽  
Sidney Hemming ◽  
Hannah Buchband ◽  
Cade Quigley ◽  
...  

<p>IODP Expedition 379 to the Amundsen Sea continental rise recovered latest Miocene-Holocene sediments from two sites on a drift in water depths >3900m. Sediments are dominated by clay and silty clay with coarser-grained intervals and ice-rafted detritus (IRD) (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021). Cobble-sized dropstones appear as fall-in, in cores recovered from sediments >5.3 Ma.  We consider that abundant IRD and the sparse dropstones melted out of icebergs formed due to Antarctic ice-sheet calving events. We are using petrological and age characteristics of the clasts from the Exp379 sites to fingerprint their bedrock provenance. The results may aid in reconstruction of past changes in icesheet extent and extend knowledge of subglacial bedrock.</p><p>Mapped onshore geology shows pronounced distinctions in bedrock age between tectonic provinces of West or East Antarctica (e.g. Cox et al. 2020, doi:10.21420/7SH7-6K05; Jordan et al. 2020, doi.org/10.1038/s43017-019-0013-6). This allows us to use geochronology and thermochronology of rock clasts and minerals for tracing their provenance, and ascertain whether IRD deposited at IODP379 drillsites originated from proximal or distal Antarctic sources. We here report zircon and apatite U-Pb dates from four sand samples and five dropstones taken from latest Miocene, early Pliocene, and Plio-Pleistocene-boundary sediments. Additional Hf isotope data, and apatite fission track and <sup>40</sup>Ar/<sup>39</sup>Ar Kfeldspar ages for some of the same samples help to strengthen provenance interpretations.</p><p>The study revealed three distinct zircon age populations at ca. 100, 175, and 250 Ma. Using Kolmogorov-Smirnov (K-S) statistical tests to compare our new igneous and detrital zircon (DZ) U-Pb results with previously published data, we found strong similarities to West Antarctic bedrock, but low correspondence to prospective sources in East Antarctica, implying a role for icebergs calved from the West Antarctic Ice Sheet (WAIS). The ~100 Ma age resembles plutonic ages from Marie Byrd Land and islands in Pine Island Bay.  The ~250 and 175 Ma populations match published mineral dates from shelf sediments in the eastern Amundsen Sea Embayment as well as granite ages from the Antarctic Peninsula and the Ellsworth-Whitmore Mountains (EWM). The different derivation of coarse sediment sources requires changes in iceberg origin through the latest Miocene, early Pliocene, and Plio/Pleistocene, likely the result of changes in WAIS extent.</p><p>One unique dropstone recovered from Exp379 Site U1533B is green quartz arenite, which yielded mostly 500-625 Ma detrital zircons. In visual appearance and dominant U-Pb age population, it resembles a sandstone dropstone recovered from Exp382 Site U1536 in the Scotia Sea (Hemming et al. 2020, https://gsa.confex.com/gsa/2020AM/meetingapp.cgi/Paper/357276). K-S tests yield high values (P ≥ 0.6), suggesting a common provenance for both dropstones recovered from late Miocene to Pliocene sediments, despite the 3270 km distance separating the sites. Comparisons to published data, in progress, narrow the group of potential on-land sources to exposures in the EWM or isolated ranges at far south latitudes in the Antarctic interior.  If both dropstones originated from the same source area, they could signify dramatic shifts in the WAIS grounding line position, and the possibility of the periodic opening of a seaway connecting the Amundsen and Weddell Seas.</p>


Sign in / Sign up

Export Citation Format

Share Document