scholarly journals The Weddell Sea region: an important precipitation channel to the interior of the Antarctic ice sheet as revealed by glaciochemical investigation of surface snow along the longest trans-Antarctic route

1999 ◽  
Vol 29 ◽  
pp. 55-60 ◽  
Author(s):  
Qin Dahe ◽  
Paul A. Mayewski ◽  
Ren Jiawen ◽  
Xiao Cunde ◽  
Sun Junying

AbstractGlaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (>2000 m a.s.l.). This opinion is supported by the following. (1) The fluxes of sea-salt ions such as Na+, Mg2 + and CF display a decreasing trend from the west to the east of interior Antarctica. In |eneral, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease. For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector. (3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km. High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone. (4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend. Since calcium is mainly derived from crustal sources, and nssSO42- is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor.

1994 ◽  
Vol 20 ◽  
pp. 440-447 ◽  
Author(s):  
R. Mulvaney ◽  
E. W. Wolff

A compilation of reliable data for sodium, nitrate, chloride and sulphate has been made. NO3 concentrations arc remarkably consistent across Antarctica, though there appears to be some correlation with altitude and accumulation rate. Post-depositional loss of NO3 - is important at low-accumulation sites. Cl concentration (either measured directly or calculated from Na+ via the sea salt ratio) decreases with distance from the coast, though the decline is less rapid if the coastal topography is not steep or mountainous. Excess sulphate (xsSO4 2) concentration (here calculated from normal sea-salt ratios with Na+ or Cl) also declines with distance from the coast, though less quickly than Cl-. Fractionation of sea-salt ions makes the calculation of SO4 2- uncertain.


1994 ◽  
Vol 20 ◽  
pp. 440-447 ◽  
Author(s):  
R. Mulvaney ◽  
E. W. Wolff

A compilation of reliable data for sodium, nitrate, chloride and sulphate has been made. NO3 concentrations arc remarkably consistent across Antarctica, though there appears to be some correlation with altitude and accumulation rate. Post-depositional loss of NO3- is important at low-accumulation sites. Cl concentration (either measured directly or calculated from Na+ via the sea salt ratio) decreases with distance from the coast, though the decline is less rapid if the coastal topography is not steep or mountainous. Excess sulphate (xsSO42) concentration (here calculated from normal sea-salt ratios with Na+ or Cl) also declines with distance from the coast, though less quickly than Cl-. Fractionation of sea-salt ions makes the calculation of SO42- uncertain.


2004 ◽  
Vol 39 ◽  
pp. 181-187 ◽  
Author(s):  
Qin Dahe ◽  
Xiao Cunde ◽  
Ian Allison ◽  
Bian Lingen ◽  
Rod Stephenson ◽  
...  

AbstractThe net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a 1 year record of hourly snow-height measurements that shows its seasonal variability. The measurements were made with an ultrasonic sensor mounted on an automatic weather station (AWS) installed at LGB69, Princess Elizabeth Land, Antarctica (70.835˚S, 77.075˚E; 1850 ma.s.l.). The average accumulation at this site is approximately 0.70 m snow a–1. Throughout the winter, between April and September, there was little change in surface snow height. The strongest accumulation occurred during the period October–March, with four episodic increases occurring during 2002. These episodic events coincided with obvious humidity ‘pulses’ and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km north-northeast of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anticorrelation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.


2021 ◽  
Author(s):  
Alan Aitken ◽  
Lu Li ◽  
Bernd Kulessa ◽  
Thomas Jordan ◽  
Joanne Whittaker ◽  
...  

<p>Subglacial and ice-sheet marginal sedimentary basins have very different physical properties to crystalline bedrock and, therefore, form distinct conditions that influence the flow of ice above. Sedimentary rocks are particularly soft and erodible, and therefore capable of sustaining layers of subglacial till that may deform to facilitate fast ice flow downstream. Furthermore, sedimentary rocks are relatively permeable and thus allow for enhanced fluid flux, with associated impacts on ice-sheet dynamics, including feedbacks with subglacial hydrologic systems and transport of heat to the ice-sheet bed. Despite the importance for ice-sheet dynamics there is, at present, no comprehensive record of sedimentary basins in the Antarctic continent, limiting our capacity to investigate these influences. Here we develop the first version of an Antarctic-wide spatial database of sedimentary basins, their geometries and physical attributes. We emphasise the definition of in-situ and undeformed basins that retain their primary characteristics, including relative weakness and high permeability, and therefore are more likely to influence ice sheet dynamics. We define the likely extents and nature of sedimentary basins, considering a range of geological and geophysical data, including: outcrop observations, gravity and magnetic data, radio-echo sounding data and passive and active-source seismic data. Our interpretation also involves derivative products from these data, including analyses guided by machine learning. The database includes for each basin its defining characteristics in the source datasets, and interpreted information on likely basin age, sedimentary thickness, surface morphology and tectonic type. The database is constructed in ESRI geodatabase format and is suitable for incorporation in multifaceted data-interpretation and modelling procedures. It can be readily updated given new information. We define extensive basins in both East and West Antarctica, including major regions in the Ross and Weddell Sea embayments and the Amundsen Sea region of West Antarctica, and the Wilkes, Aurora and Recovery subglacial basins of East Antarctica. The compilation includes smaller basins within crystalline-bedrock dominated areas such as the Transantarctic Mountains, the Antarctic Peninsula and Dronning Maud Land. The distribution of sedimentary basins reveals the combined influence of the tectonic and glacial history of Antarctica on the current and future configuration of the Antarctic Ice Sheet and highlights areas in which the presence of dynamically-evolving subglacial till layers and the exchange of groundwater and heat with the ice sheet bed  are more likely, contributing to dynamic behaviour of the Antarctic Ice Sheet.  </p>


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

<p>The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica’s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.</p><p>Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.</p><p>Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula’s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.</p>


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2017 ◽  
Vol 63 (240) ◽  
pp. 703-715 ◽  
Author(s):  
BAOJUN ZHANG ◽  
ZEMIN WANG ◽  
FEI LI ◽  
JIACHUN AN ◽  
YUANDE YANG ◽  
...  

ABSTRACTThis study explores an iterative method for simultaneously estimating the present-day glacial isostatic adjustment (GIA), ice mass change and elastic vertical crustal deformation of the Antarctic ice sheet (AIS) for the period October 2003–October 2009. The estimations are derived by combining mass measurements of the GRACE mission and surface height observations of the ICESat mission under the constraint of GPS vertical crustal deformation rates in the spatial domain. The influence of active subglacial lakes on GIA estimates are mitigated for the first time through additional processing of ICESat data. The inferred GIA shows that the strongest uplift is found in the Amundsen Sea Embayment (ASE) sector and subsidence mostly occurs in Adelie Terre and the East Antarctica inland. The total GIA-related mass change estimates for the entire AIS, West Antarctica Ice Sheet (WAIS), East Antarctica Ice Sheet (EAIS), and Antarctic Peninsula Ice Sheet (APIS) are 43 ± 38, 53 ± 24, −23 ± 29 and 13 ± 6 Gt a−1, respectively. The overall ice mass change of the AIS is −46 ± 43 Gt a−1 (WAIS: −104 ± 25, EAIS: 77 ± 35, APIS: −20 ± 6). The most significant ice mass loss and most significant elastic vertical crustal deformations are concentrated in the ASE and northern Antarctic Peninsula.


2016 ◽  
Author(s):  
Bianca Kallenberg ◽  
Paul Tregoning ◽  
Janosch F. Hoffmann ◽  
Rhys Hawkins ◽  
Anthony Purcell ◽  
...  

Abstract. Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It's often been assumed that changes in ice dynamic rates only need to be considered when assessing long term ice sheet mass balance; however, two decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about changes in ice dynamic rates are still limited, especially in East Antarctica. Without understanding ice dynamic rates it is not possible to properly assess changes in ice sheet mass balance, surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice dynamic rates by removing modelled rates of surface mass balance, firn compaction and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of ice dynamic rates by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction and ice dynamic rates can be modelled and correlate with observed elevation changes from satellite altimetry.


2011 ◽  
Vol 5 (5) ◽  
pp. 2967-2989 ◽  
Author(s):  
K. Mahalinganathan ◽  
M. Thamban ◽  
C. M. Laluraj ◽  
B. L. Redkar

Abstract. Previous studies on variability of sea-salt records in Antarctic snow have established an unambiguous relationship with the proximity to the sea and have been directly correlated with the site specific features like elevation and distance from the coast. On the other hand, variations in Cl−/Na+ ratio in have been attributed with the reaction mechanisms involving atmospheric acids. In the present study, annual records of Na+, Cl− and SO42− records were investigated using snow cores along a 180 km coast to inland transect in Princess Elizabeth Land, East Antarctica. Exceptionally high Na+ concentrations varying between 1000 and 2000 μg l−1 were observed within 50 km of the transect. Large variations in Cl−/Na+ ratio were observed within 50 km from the coast. A rapid increase in the elevation (0–1115 m) was noticed up to 50 km from the coast, whereas a steady elevation change (1115–2200 m) occurred between 50 and 180 km. The largest slope of the entire transect was observed (33.7 m km−1) between 20 and 30 km and records from this area correspondingly revealed extensive modifications in snow sea-salt chemistry, with Cl−/Na+ ratios as low as 0.2. Statistical analysis showed a strong association between the slope of the ice sheet and variation of the sea-salt ions along the transect. While distance from coast accounted for some variability, the altitude by itself seem to have no significant control on the distribution of sea-salt ions. We suggest that the degree of slope of the ice sheet on the coastal regions of Antarctica could have a major influence the sea-salt chemistry.


Sign in / Sign up

Export Citation Format

Share Document