scholarly journals Multi-symplectic magnetohydrodynamics

2014 ◽  
Vol 80 (5) ◽  
pp. 707-743 ◽  
Author(s):  
G. M. Webb ◽  
J. F. McKenzie ◽  
G. P. Zank

AbstractA multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potentialÃwhere α=Ã⋅dxis Lie dragged with the flow, andB=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to producen(n−1)/2 extra conservation laws, wherenis the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.

Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 173
Author(s):  
Roman Ilin ◽  
Sergey Paston

The current paper is devoted to the investigation of the general form of the energy–momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any restrictions on the order of derivatives of the independent variables in it or their transformation laws. As a result of the generalized Noether procedure, we obtain a recurrent chain of the equations, which allows one to express canonical pEMT as a divergence of the superpotential. The explicit expression for this superpotential is also given. We discuss the structure of the obtained expressions and the conditions for the derived pEMT conservation laws to be satisfied independently (fully or partially) by the equations of motion. Deformations of the superpotential form for theories with a change in the independent variables in action are also considered. We apply these results to some interesting particular cases: general relativity and its modifications, particularly mimetic gravity and Regge–Teitelboim embedding gravity.


2007 ◽  
Vol 64 (6) ◽  
pp. 1794-1810 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity- based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-maximum Froude and Rossby numbers Fr ∼0.5 and Ro ∼1, far from the usual asymptotic limits Ro → 0, Fr → 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-δδ, plain-γγ, and plain-δγ PBMs and the corresponding hyperbalance PBMs, of various orders, where “order” is related to the number of time derivatives of the divergence equation used in defining balance and potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-δδ, hyper-γγ, and hyper-δγ PBMs, respectively. As proved in Part I, except for the leading-order plain-γγ each plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion degrades the accuracy, as conjectured by McIntyre and Norton. Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation (PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured by the smallness of the ratio ϵ = ||QPBM − QPE||2/||QPE||2, where QPBM and QPE denote the potential vorticity fields of the PBM and the PEs, respectively, and || ||2 is the L2 norm. At 30 days the most accurate PBMs have ϵ ≈ 10−2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny details. Most accurate is defined by minimizing ϵ over all orders and truncation types δδ, γγ, and δγ. Contrary to McIntyre and Norton’s conjecture, the minimal ϵ values did not differ systematically or significantly between plain and hyperbalance PBMs. The smallness of ϵ suggests that the slow manifolds defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which Ro ≲ 1 and Fr ≲ 0.5. As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, . . . 10 were carried out in which attention was focused on the amplitudes of inertia–gravity waves representing the imbalance arising in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures therefrom, the results of the initialization experiments suggest a negative correlation between early imbalance and late cumulative error ϵ. In such near-optimal conditions the imbalance seems to be acting like weak background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when measured cumulatively over 30 days.


2009 ◽  
Vol 15 (S2) ◽  
pp. 134-135 ◽  
Author(s):  
C Phatak ◽  
E Humphrey ◽  
M DeGraef ◽  
A Petford-Long

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2018 ◽  
Vol 184 ◽  
pp. 01023
Author(s):  
Gordana V. Jelić ◽  
Vladica Stanojević ◽  
Dragana Radosavljević

One of the basic equations of mathematical physics (for instance function of two independent variables) is the differential equation with partial derivatives of the second order (3). This equation is called the wave equation, and is provided when considering the process of transverse oscillations of wire, longitudinal oscillations of rod, electrical oscillations in a conductor, torsional vibration at waves, etc… The paper shows how to form the equation (3) which is the equation of motion of each point of wire with abscissa x in time t during its oscillation. It is also shown how to determine the equation (3) in the task of electrical oscillations in a conductor. Then equation (3) is determined, and this solution satisfies the boundary and initial conditions.


Sign in / Sign up

Export Citation Format

Share Document