PARABOLIC RATIONAL MAPS

2001 ◽  
Vol 63 (3) ◽  
pp. 673-689 ◽  
Author(s):  
NICOLAI HAYDN ◽  
STEFANO ISOLA

The paper studies the dynamics of rational maps with indifferent parabolic points by comparing their dynamical properties with those of their ‘jump transformation’ which is uniformly expanding on a non-compact set with infinite Markov partition. It establishes the spectral properties of a two-variables operator-valued function associated to the jump transformation and exploits their dynamical relevance to allow the analytic properties of the pressure, the escape rate from a neighbourhood of the Julia set and the asymptotic distribution of pre-images to be studied.

2011 ◽  
Vol 21 (11) ◽  
pp. 3323-3339
Author(s):  
RIKA HAGIHARA ◽  
JANE HAWKINS

We study a family of rational maps of the Riemann sphere with the property that each map has two fixed points with multiplier -1; moreover, each map has no period 2 orbits. The family we analyze is Ra(z) = (z3 - z)/(-z2 + az + 1), where a varies over all nonzero complex numbers. We discuss many dynamical properties of Ra including bifurcations of critical orbit behavior as a varies, connectivity of the Julia set J(Ra), and we give estimates on the Hausdorff dimension of J(Ra).


2016 ◽  
Vol 37 (6) ◽  
pp. 1997-2016 ◽  
Author(s):  
YINGQING XIAO ◽  
FEI YANG

In this paper, we study the dynamics of the family of rational maps with two parameters $$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$ where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.


2014 ◽  
Vol 35 (7) ◽  
pp. 2171-2197 ◽  
Author(s):  
LUNA LOMONACO

In this paper we introduce the notion of parabolic-like mapping. Such an object is similar to a polynomial-like mapping, but it has a parabolic external class, i.e. an external map with a parabolic fixed point. We define the notion of parabolic-like mapping and we study the dynamical properties of parabolic-like mappings. We prove a straightening theorem for parabolic-like mappings which states that any parabolic-like mapping of degree two is hybrid conjugate to a member of the family $$\begin{eqnarray}\mathit{Per}_{1}(1)=\left\{[P_{A}]\,\bigg|\,P_{A}(z)=z+\frac{1}{z}+A,~A\in \mathbb{C}\right\}\!,\end{eqnarray}$$ a unique such member if the filled Julia set is connected.


2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


2011 ◽  
Vol 32 (5) ◽  
pp. 1711-1726 ◽  
Author(s):  
WENJUAN PENG ◽  
YONGCHENG YIN ◽  
YU ZHAI

AbstractIn this paper, taking advantage of quasi-conformal surgery, we prove that each non-hyperbolic rational map with a Cantor Julia set can be approximated by hyperbolic rational maps with Cantor Julia sets of the same degree.


1992 ◽  
Vol 12 (1) ◽  
pp. 39-52 ◽  
Author(s):  
L. Baribeau ◽  
T. J. Ransford

AbstractLet {RA} be an analytic family of rational maps and denote by j(λ) the Julia set of Rλ. We prove that the upper semicontinuous regularization j(λ) of j(λ) (which coincides with j(λ) for all λ in a dense open set) is a meromorphic multifunction, and give applications that illustrate the instability of Julia sets. In a similar vein, we also consider forward orbits of critical points and limit sets of Kleinian groups.


2013 ◽  
Vol 23 (05) ◽  
pp. 1350083 ◽  
Author(s):  
YONGPING ZHANG

The dynamical and fractal behaviors of the complex perturbed rational maps [Formula: see text] are discussed in this paper. And the optimal control function method is taken on the Julia set of this system. In this control method, infinity is regarded as a fixed point to be controlled. By substituting the driving item for an item in the optimal control function, synchronization of Julia sets of two such different systems is also studied.


1996 ◽  
Vol 16 (4) ◽  
pp. 833-848 ◽  
Author(s):  
Sebastian Van Strien

AbstractIn this paper we shall give examples of rational maps on the Riemann sphere and also of polynomial interval maps which are transitive but not ergodic with respect to Lebesgue measure. In fact, these maps have two disjoint compact attractors whose attractive basins are ‘intermingled’, each having a positive Lebesgue measure in every open set. In addition, we show that there exists a real bimodal polynomial with Fibonacci dynamics (of the type considered by Branner and Hubbard), whose Julia set is totally disconnected and has positive Lebesgue measure. Finally, we show that there exists a rational map associated to the Newton iteration scheme corresponding to a polynomial whose Julia set has positive Lebesgue measure.


1997 ◽  
Vol 17 (2) ◽  
pp. 253-267 ◽  
Author(s):  
A. G. ABERCROMBIE ◽  
R. NAIR

A rational map $T$ of degree not less than two is known to preserve a measure, called the conformal measure, equivalent to the Hausdorff measure of the same dimension as its Julia set $J$ and supported there, with respect to which it is ergodic and even exact. As a consequence of Birkhoff's pointwise ergodic theorem almost every $z$ in $J$ with respect to the conformal measure has an orbit that is asymptotically distributed on $J$ with respect to this measure. As a counterpoint to this, the following result is established in this paper. Let $\Omega(z)=\Omega_{T}(z)$ denote the closure of the set $\{T^{n}(z):n=1,2,\ldots\}$. For any expanding rational map $T$ of degree at least two we set \[ S(z_{0})=\{z\in J:z_{0}\not\in \Omega_{T}(z)\}. \] We show that for all $z_{0}$ the Hausdorff dimensions of $S(z)$ and $J$ are equal.


1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


Sign in / Sign up

Export Citation Format

Share Document