An exceptional set in the ergodic theory of rational maps of the Riemann sphere

1997 ◽  
Vol 17 (2) ◽  
pp. 253-267 ◽  
Author(s):  
A. G. ABERCROMBIE ◽  
R. NAIR

A rational map $T$ of degree not less than two is known to preserve a measure, called the conformal measure, equivalent to the Hausdorff measure of the same dimension as its Julia set $J$ and supported there, with respect to which it is ergodic and even exact. As a consequence of Birkhoff's pointwise ergodic theorem almost every $z$ in $J$ with respect to the conformal measure has an orbit that is asymptotically distributed on $J$ with respect to this measure. As a counterpoint to this, the following result is established in this paper. Let $\Omega(z)=\Omega_{T}(z)$ denote the closure of the set $\{T^{n}(z):n=1,2,\ldots\}$. For any expanding rational map $T$ of degree at least two we set \[ S(z_{0})=\{z\in J:z_{0}\not\in \Omega_{T}(z)\}. \] We show that for all $z_{0}$ the Hausdorff dimensions of $S(z)$ and $J$ are equal.

1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


1996 ◽  
Vol 16 (4) ◽  
pp. 833-848 ◽  
Author(s):  
Sebastian Van Strien

AbstractIn this paper we shall give examples of rational maps on the Riemann sphere and also of polynomial interval maps which are transitive but not ergodic with respect to Lebesgue measure. In fact, these maps have two disjoint compact attractors whose attractive basins are ‘intermingled’, each having a positive Lebesgue measure in every open set. In addition, we show that there exists a real bimodal polynomial with Fibonacci dynamics (of the type considered by Branner and Hubbard), whose Julia set is totally disconnected and has positive Lebesgue measure. Finally, we show that there exists a rational map associated to the Newton iteration scheme corresponding to a polynomial whose Julia set has positive Lebesgue measure.


1999 ◽  
Vol 09 (09) ◽  
pp. 1763-1769
Author(s):  
M. DENKER ◽  
S. ROHDE

If J is the Julia set of a parabolic rational map having Hausdorff dimension h<1, we show that Sullivan's h-conformal measure on J is either absolutely continuous or orthogonal with respect to the Hausdorff measures defined by the function [Formula: see text], according to whether τ>τ0 or τ<τ0 for some explicitly computable τ0>0.


2000 ◽  
Vol 128 (1) ◽  
pp. 141-156 ◽  
Author(s):  
B. O. STRATMANN ◽  
M. URBAŃSKI

We study the h-conformal measure for parabolic rational maps, where h denotes the Hausdorff dimension of the associated Julia sets. We derive a formula which describes in a uniform way the scaling of this measure at arbitrary elements of the Julia set. Furthermore, we establish the Khintchine Limit Law for parabolic rational maps (the analogue of the ‘logarithmic law for geodesics’ in the theory of Kleinian groups) and show that this law provides some efficient control for the fluctuation of the h-conformal measure. We then show that these results lead to some refinements of the description of this measure in terms of Hausdorff and packing measures with respect to some gauge functions. Also, we derive a simple proof of the fact that the Julia set of a parabolic rational map is uniformly perfect. Finally, we obtain that the conformal measure is a regular doubling measure, we show that its Renyi dimension and its information dimension are equal to h and we compute its logarithmic index.


2011 ◽  
Vol 21 (11) ◽  
pp. 3323-3339
Author(s):  
RIKA HAGIHARA ◽  
JANE HAWKINS

We study a family of rational maps of the Riemann sphere with the property that each map has two fixed points with multiplier -1; moreover, each map has no period 2 orbits. The family we analyze is Ra(z) = (z3 - z)/(-z2 + az + 1), where a varies over all nonzero complex numbers. We discuss many dynamical properties of Ra including bifurcations of critical orbit behavior as a varies, connectivity of the Julia set J(Ra), and we give estimates on the Hausdorff dimension of J(Ra).


2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


2011 ◽  
Vol 32 (5) ◽  
pp. 1711-1726 ◽  
Author(s):  
WENJUAN PENG ◽  
YONGCHENG YIN ◽  
YU ZHAI

AbstractIn this paper, taking advantage of quasi-conformal surgery, we prove that each non-hyperbolic rational map with a Cantor Julia set can be approximated by hyperbolic rational maps with Cantor Julia sets of the same degree.


1996 ◽  
Vol 16 (2) ◽  
pp. 255-266 ◽  
Author(s):  
Manfred Denker ◽  
Feliks Przytycki ◽  
Mariusz Urbański

AbstractLet T be a rational function of degree ≥ 2 on the Riemann sphere. Our results are based on the lemma that the diameter of a connected component of T−n(B(x, r)), centered at any point x in its Julia set J = J(T), does not exceed Lnrp for some constants L ≥ 1 and ρ > 0. Denote the transfer operator of a Hölder-continuous function φ on J satisfying P(T,φ) > supz∈Jφ(z). We study the behavior of {: n ≥ 1} for Hölder-continuous functions ψ and show that the sequence is (uniformly) normbounded in the space of Hölder-continuous functions for sufficiently small exponent. As a consequence we obtain that the density of the equilibrium measure μ for φ with respect to the -conformal measure is Höolder-continuous. We also prove that the rate of convergence of {ψ to this density in sup-norm is . From this we deduce the corresponding decay of the correlation integral and the central limit theorem for ψ.


2002 ◽  
Vol 91 (1) ◽  
pp. 27 ◽  
Author(s):  
B. O. Stratmann ◽  
M. Urbański

In this paper we derive a Diophantine analysis for Julia sets of parabolic rational maps. We generalise two theorems of Dirichlet and Jarník in number theory to the theory of iterations of these maps. On the basis of these results, we then derive a "weak multifractal analysis" of the conformal measure naturally associated with a parabolic rational map. The results in this paper contribute to a further development of Sullivan's famous dictionary translating between the theory of Kleinian groups and the theory of rational maps.


2017 ◽  
Vol 39 (4) ◽  
pp. 1002-1019
Author(s):  
JUNGHUN LEE

The aim of this paper is to show $J$-stability of expanding rational maps over an algebraically closed, complete and non-Archimedean field of characteristic zero. More precisely, we will show that for any expanding rational map, there exists a neighborhood of it such that the dynamics on the Julia set of any rational map in the neighborhood is the same as the dynamics of the expanding rational map as a non-Archimedean analogue of a corollary of Mañé, Sad and Sullivan’s result [On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4)16 (1983), 193–217] in complex dynamics.


Sign in / Sign up

Export Citation Format

Share Document