Incidence of ship strikes of large whales in Washington State

Author(s):  
Annie B. Douglas ◽  
John Calambokidis ◽  
Stephen Raverty ◽  
Steven J. Jeffries ◽  
Dyanna M. Lambourn ◽  
...  

Ship strikes of large whales cause mortalities worldwide, but there is uncertainty regarding the frequency and species involved. We examined 130 records (from 1980–2006) of large whale strandings in Washington State. Nineteen strandings (seven species) had evidence of ship-strikes. Fin whales (Balaenoptera physalus) had the highest incidence of ante-mortem ship strike (five of seven, with the remaining two possibly post-mortem) and all but one occurring since 2002. Six grey whales (Eschrichtius robustus) suffered ‘possible ship strike’ injuries, likely the result of their large numbers in the area, rather than high levels of ship strikes. Only one possible ship-struck humpback whale was recorded, despite concentrations of humpbacks feeding within shipping lanes in this region. This study shows dramatic differences in occurrences of ship-struck large whales by species, which we believe results from a combination of species' vulnerability to ship strikes, and how likely a struck whale is to be caught up on the bow of a ship and brought to waters where it can be examined.

Author(s):  
Lovrenc Lipej ◽  
Jakov Dulčić ◽  
Boris Kryštufek

Twenty-three observations of 26 fin whales Balaenoptera physalus are documented for the northern Adriatic. Records were more common along the eastern coast and have increased over the last decades. The latter coincides with the increased presence of other planktivorous vertebrates (humpback whale, basking shark) and possibly follow changes in the zooplankton abundance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christian Lydersen ◽  
Jade Vacquié-Garcia ◽  
Mads Peter Heide-Jørgensen ◽  
Nils Øien ◽  
Christophe Guinet ◽  
...  

Abstract Insight into animal movements is essential for understanding habitat use by individuals as well as population processes and species life-history strategies. In this study, we instrumented 25 fin whales with ARGOS satellite-transmitters in Svalbard, Norway, to study their movement patterns and behaviour (Area Restricted Search (ARS), transiting or unknown) during boreal autumn/early winter. Ten of the whales stayed in the tagging area (most northerly location: 81.68°N) for their entire tracking periods (max 45 days). The other 15 whales moved in a south-westerly direction; the longest track ended off the coast of northern Africa (> 5000 km from the tagging location) after 96 days. The whales engaged in ARS behaviour intermittently throughout their southward migrations. During transit phases the whales moved quickly; one individual maintained an average horizontal speed of 9.3 km/h (travelling 223 km per day) for a period of a week. This study documents that: (1) some fin whales might remain at high latitudes during winter; (2) the whales that do migrate probably feed along the way; (3) they can maintain high transiting speed for long periods and; (4) one breeding area for this species is likely located in deep, warm water some 100 km west of Morocco.


2021 ◽  
Author(s):  
Daniela Bernot‐Simon ◽  
Lorena Viloria‐Gómora ◽  
Alejandro Gómez‐Gallardo ◽  
Jorge Urbán R.

2014 ◽  
Vol 74 (1) ◽  
pp. 137-144 ◽  
Author(s):  
LL Wedekin ◽  
MR Rossi-Santos ◽  
C Baracho ◽  
AL Cypriano-Souza ◽  
PC Simões-Lopes

Oceanic waters are difficult to assess, and there are many gaps in knowledge regarding cetacean occurrence. To fill some of these gaps, this article provides important cetacean records obtained in the winter of 2010 during a dedicated expedition to collect visual and acoustic information in the Vitória-Trindade seamounts. We observed 19 groups of cetaceans along a 1300-km search trajectory, with six species being identified: the humpback whale (Megaptera novaeangliae, N = 9 groups), the fin whale (Balaenoptera physalus, N = 1), the Antarctic minke whale (Balaenoptera bonaerensis, N = 1), the rough-toothed dolphin (Steno bredanensis, N = 1), the bottlenose dolphin (Tursiops truncatus, N = 2), and the killer whale (Orcinus orca, N = 1). Most humpback whale groups (N = 7; 78%) were observed in the Vitória-Trindade seamounts, especially the mounts close to the Abrolhos Bank. Only one lone humpback whale was observed near Trindade Island after a search effort encompassing more than 520 km. From a total of 28 acoustic stations, humpback whale songs were only detected near the seamounts close to the Abrolhos Bank, where most groups of this species were visually detected (including a competitive group and groups with calves). The presence of humpback whales at the Trindade Island and surroundings is most likely occasional, with few sightings and low density. Finally, we observed a significant number of humpback whales along the seamounts close to the Abrolhos Bank, which may function as a breeding habitat for this species. We also added important records regarding the occurrence of cetaceans in these mounts and in the Western South Atlantic, including the endangered fin whale.


2021 ◽  
Vol 8 ◽  
Author(s):  
Macarena Santos-Carvallo ◽  
Fernanda Barilari ◽  
María José Pérez-Alvarez ◽  
Laura Gutiérrez ◽  
Guido Pavez ◽  
...  

Whale-watching (WW) is an activity which has been increasing worldwide due to the great interest of tourists and the economic benefits it provides to local communities. However, it has been reported that this activity affects the behavioral patterns of some cetaceans, although for some species such as the fin whale (Balaenoptera physalus) this has not been extensively studied. To identify the effects of WW on the behavioral patterns of this species, we studied its traveling and resting behaviors in a locality of north-central Chile from 2015 to 2018. Using a theodolite, we calculated the response variables of swim speed, directness index, and reorientation for each behavior. We used the number of WW boats and the WW scenarios of “before”, “during”, and “after” the presence of boats as possible factors to explain the differences in the response variables of the whales, along with the factors of year, month, group size, and distance from the observation point. Reorientation increased significantly and the directness index decreased significantly for both traveling and resting behaviors from “before” to “during” WW scenarios, indicating more erratic and sinuous movements in the presence of boats. These changes in movement patterns are a commonly reported evasion response of cetaceans to the presence of WW boats. For traveling behavior, the swimming speed significantly increased, and trends showed increased reorientation and a decrease in the directness index in the “after” WW scenario, which suggests perturbation of the whales potentially associated with the speed and the direction in which the boats left. During resting behavior, the trajectories of the fin whales became straighter (decrease in reorientation) as the number of boats increased, thus evasion (more erratic and sinuous movements) is a behavior used less by fin whales as the number of boats increases. Notwithstanding the fact that tourism development in the study area is small in scale, we found that WW generates adverse effects that are reflected in changes in the whales’ movement patterns. This kind of information is valuable to the adjustment and/or design of management strategies for the species, which is fundamental for WW to continue to be a sustainable activity.


2018 ◽  
Vol 99 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Jared R Towers ◽  
Mark Malleson ◽  
Christie J McMillan ◽  
Jane Cogan ◽  
Susan Berta ◽  
...  

2019 ◽  
Vol 100 (5) ◽  
pp. 1653-1670 ◽  
Author(s):  
Frederick I Archer ◽  
Robert L Brownell ◽  
Brittany L Hancock-Hanser ◽  
Phillip A Morin ◽  
Kelly M Robertson ◽  
...  

Abstract Three subspecies of fin whales (Balaenoptera physalus) are currently recognized, including the northern fin whale (B. p. physalus), the southern fin whale (B. p. quoyi), and the pygmy fin whale (B. p. patachonica). The Northern Hemisphere subspecies encompasses fin whales in both the North Atlantic and North Pacific oceans. A recent analysis of 154 mitogenome sequences of fin whales from these two ocean basins and the Southern Hemisphere suggested that the North Pacific and North Atlantic populations should be treated as different subspecies. Using these mitogenome sequences, in this study, we conduct analyses on a larger mtDNA control region data set, and on 23 single-nucleotide polymorphisms (SNPs) from 144 of the 154 samples in the mitogenome data set. Our results reveal that North Pacific and North Atlantic fin whales can be correctly assigned to their ocean basin with 99% accuracy. Results of the SNP analysis indicate a correct classification rate of 95%, very low rates of gene flow among ocean basins, and that distinct mitogenome matrilines in the North Pacific are interbreeding. These results indicate that North Pacific fin whales should be recognized as a separate subspecies, with the name B. p. velifera Cope in Scammon 1869 as the oldest available name.


Sign in / Sign up

Export Citation Format

Share Document