scholarly journals Unitary representations of unipotent groups associated with theta series

1992 ◽  
Vol 127 ◽  
pp. 167-174
Author(s):  
Hisasi Morikawa

1. Unipotent group of real (g + 2) × (g + 2) -matricesmay be regarded as a split extension of Ng (R) by Heisenberg group of real (g + 2) × (g + 2)-matrices

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


2004 ◽  
Vol 11 (4) ◽  
pp. 775-782
Author(s):  
M. Megrelishvili

Abstract Let 𝐻(𝑋) := (ℝ × 𝑋) ⋋ 𝑋* be the generalized Heisenberg group induced by a normed space 𝑋. We prove that 𝑋 and 𝑋* are relatively minimal subgroups of 𝐻(𝑋). We show that the group 𝐺 := 𝐻(𝐿4[0, 1]) is reflexively representable but weakly continuous unitary representations of 𝐺 in Hilbert spaces do not separate points of 𝐺. This answers the question of A. Shtern.


2016 ◽  
Vol 152 (8) ◽  
pp. 1697-1724 ◽  
Author(s):  
Tanmay Deshpande

In this paper, we extend the notion of Shintani descent to general (possibly disconnected) algebraic groups defined over a finite field $\mathbb{F}_{q}$. For this, it is essential to treat all the pure inner $\mathbb{F}_{q}$-rational forms of the algebraic group at the same time. We prove that the notion of almost characters (introduced by Shoji using Shintani descent) is well defined for any neutrally unipotent algebraic group, i.e. an algebraic group whose neutral connected component is a unipotent group. We also prove that these almost characters coincide with the ‘trace of Frobenius’ functions associated with Frobenius-stable character sheaves on neutrally unipotent groups. In the course of the proof, we also prove that the modular categories that arise from Boyarchenko and Drinfeld’s theory of character sheaves on neutrally unipotent groups are in fact positive integral, confirming a conjecture due to Drinfeld.


1991 ◽  
Vol 123 ◽  
pp. 103-117 ◽  
Author(s):  
Jae-Hyun Yang

A certain nilpotent Lie group plays an important role in the study of the foundations of quantum mechanics ([Wey]) and of the theory of theta series (see [C], [I] and [Wei]). This work shows how theta series are applied to decompose the natural unitary representation of a Heisenberg group.


2018 ◽  
Vol Volume 2 ◽  
Author(s):  
Daniel Greb ◽  
Christian Miebach

We study meromorphic actions of unipotent complex Lie groups on compact K\"ahler manifolds using moment map techniques. We introduce natural stability conditions and show that sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable K\"ahler structures obtained by symplectic reduction. The relation of our complex-analytic theory to the work of Doran--Kirwan regarding the Geometric Invariant Theory of unipotent group actions on projective varieties is discussed in detail. Comment: v2: 30 pages, final version as accepted by EPIGA


2017 ◽  
Vol 5 ◽  
Author(s):  
GERGELY BÉRCZI ◽  
FRANCES KIRWAN

Let $U$ be a unipotent group which is graded in the sense that it has an extension $H$ by the multiplicative group of the complex numbers such that all the weights of the adjoint action on the Lie algebra of $U$ are strictly positive. We study embeddings of $H$ in a general linear group $G$ which possess Grosshans-like properties. More precisely, suppose $H$ acts on a projective variety $X$ and its action extends to an action of $G$ which is linear with respect to an ample line bundle on $X$. Then, provided that we are willing to twist the linearization of the action of $H$ by a suitable (rational) character of $H$, we find that the $H$-invariants form a finitely generated algebra and hence define a projective variety $X/\!/H$; moreover, the natural morphism from the semistable locus in $X$ to $X/\!/H$ is surjective, and semistable points in $X$ are identified in $X/\!/H$ if and only if the closures of their $H$-orbits meet in the semistable locus. A similar result applies when we replace $X$ by its product with the projective line; this gives us a projective completion of a geometric quotient of a $U$-invariant open subset of $X$ by the action of the unipotent group $U$.


Sign in / Sign up

Export Citation Format

Share Document