scholarly journals Stable vector bundles on algebraic surfaces II

1973 ◽  
Vol 52 ◽  
pp. 173-195 ◽  
Author(s):  
Fumio Takemoto

This paper is a continuation of “Stable vector bundles on algebraic surfaces” [10]. For simplicity we deal with non-singular projective varieties over the field of complex numbers. Let W be a variety whose fundamental group is solvable, let H be an ample line bundle on W, and let f: V → W be an unramified covering. Then we show in section 1 that if E is an f*H-stable vector bundle on V then f*E is a direct sum of H-stable vector bundles. In particular f*L is a direct sum of simple vector bundles if L is a line bundle on V.

1980 ◽  
Vol 77 ◽  
pp. 47-60 ◽  
Author(s):  
Hiroshi Umemura

Let X be a projective non-singular variety and H an ample line bundle on X. The moduli space of H-stable vector bundles exists by Maruyama [4]. If X is a curve defined over C, the structure of the moduli space (or its compactification) M(X, d, r) of stable vector bundles of degree d and rank r on X is studied in detail. It is known that the variety M(X, d, r) is irreducible. Let L be a line bundle of degree d and let M(X, L, r) denote the closed subvariety of M(X, d, r) consisting of all the stable bundles E with det E = L.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


2019 ◽  
Vol 99 (2) ◽  
pp. 195-202
Author(s):  
LINGGUANG LI

Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.


2016 ◽  
Vol 59 (4) ◽  
pp. 865-877
Author(s):  
Sarbeswar Pal

AbstractLet X be a smooth projective curve of arbitrary genus g > 3 over the complex numbers. In this short note we will show that the moduli space of rank 2 stable vector bundles with determinant isomorphic to Lx , where Lx denotes the line bundle corresponding to a point x ∊ X, is isomorphic to a certain variety of lines in the moduli space of S-equivalence classes of semistable bundles of rank 2 with trivial determinant.


1993 ◽  
Vol 130 ◽  
pp. 19-23 ◽  
Author(s):  
E. Ballico

Let X be an algebraic complex projective surface equipped with the euclidean topology and E a rank 2 topological vector bundle on X. It is a classical theorem of Wu ([Wu]) that E is uniquely determined by its topological Chern classes . Viceversa, again a classical theorem of Wu ([Wu]) states that every pair (a, b) ∈ (H (X, Z), Z) arises as topological Chern classes of a rank 2 topological vector bundle. For these results the existence of an algebraic structure on X was not important; for instance it would have been sufficient to have on X a holomorphic structure. In [Sch] it was proved that for algebraic X any such topological vector bundle on X has a holomorphic structure (or, equivalently by GAGA an algebraic structure) if its determinant line bundle has a holomorphic structure. It came as a surprise when Elencwajg and Forster ([EF]) showed that sometimes this was not true if we do not assume that X has an algebraic structure but only a holomorphic one (even for some two dimensional tori (see also [BL], [BF], or [T])).


1986 ◽  
Vol 38 (5) ◽  
pp. 1110-1121 ◽  
Author(s):  
Elvira Laura Livorni

Let L be a very ample line bundle on a smooth, connected, projective, ruled not rational surface X. We have considered the problem of classifying biholomorphically smooth, connected, projected, ruled, non rational surfaces X with smooth hyperplane section C such that the genus g = g(C) is less than or equal to six and dim where is the map associated to . L. Roth in [10] had given a birational classification of such surfaces. If g = 0 or 1 then X has been classified, see [8].If g = 2 ≠ hl,0(X) by [12, Lemma (2.2.2) ] it follows that X is a rational surface. Thus we can assume g ≦ 3.Since X is ruled, h2,0(X) = 0 andsee [4] and [12, p. 390].


2000 ◽  
Vol 43 (2) ◽  
pp. 129-137 ◽  
Author(s):  
E. Ballico

AbstractLet E be a stable rank 2 vector bundle on a smooth projective curve X and V(E) be the set of all rank 1 subbundles of E with maximal degree. Here we study the varieties (non-emptyness, irreducibility and dimension) of all rank 2 stable vector bundles, E, on X with fixed deg(E) and deg(L), L ∈ V(E) and such that .


2007 ◽  
Vol 50 (3) ◽  
pp. 427-433
Author(s):  
Israel Moreno Mejía

AbstractLet X be a smooth complex projective curve of genus g ≥ 1. Let ξ ∈ J1(X) be a line bundle on X of degree 1. LetW = Ext1(ξn, ξ–1) be the space of extensions of ξn by ξ–1. There is a rational map Dξ : G(n,W) → SUX(n + 1), where G(n,W) is the Grassmannian variety of n-linear subspaces of W and SUX(n + 1) is the moduli space of rank n + 1 semi-stable vector bundles on X with trivial determinant. We prove that if n = 2, then Dξ is everywhere defined and is injective.


2010 ◽  
Vol 21 (04) ◽  
pp. 497-522 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAINAK PODDAR

Let X be a compact connected Riemann surface of genus at least two. Let r be a prime number and ξ → X a holomorphic line bundle such that r is not a divisor of degree ξ. Let [Formula: see text] denote the moduli space of stable vector bundles over X of rank r and determinant ξ. By Γ we will denote the group of line bundles L over X such that L⊗r is trivial. This group Γ acts on [Formula: see text] by the rule (E, L) ↦ E ⊗ L. We compute the Chen–Ruan cohomology of the corresponding orbifold.


Sign in / Sign up

Export Citation Format

Share Document