Setaria cervidual specific phosphatase: characterization and its effect on eosinophil degranulation

Parasitology ◽  
2009 ◽  
Vol 136 (8) ◽  
pp. 895-904 ◽  
Author(s):  
S. RATHAUR ◽  
R. RAI ◽  
E. SRIKANTH ◽  
S. SRIVASTAVA

SUMMARYSetaria cervi, a bovine filarial parasite contains significant acid phosphatase (AcP) activity in its various life stages. Two forms of AcP were separated from somatic extract of adult female parasite using cation exchange, gel filtration and concavalin affinity chromatography. One form having a molecular mass of 79 kDa was characterized as dual specific protein tyrosine phosphatase (ScDSP) based on substrate specificity and inhibition studies. With various substrates tested, it showed significant activity in the order of phospho-L-tyrosine>pNPP>ADP>phospho-L-serine. Inhibition by orthovanadate, fluoride, molybdate, and zinc ions further confirms protein tyrosine phosphatase nature of the enzyme. Km and Vmax determined with various substrates were found to be 16·66 mM, 25·0 μM/ml/min with pNPP; 20·0 mM, 40·0 μM/ml/min with phospho-L-tyrosine and 27·0 mM, 25·0 μM/ml/min with phospho-L-serine. KIwith pNPP and sodium orthovanadate (IC5033·0 μM) was calculated to be 50·0 mM. Inhibition with pHMB, silver nitrate, DEPC and EDAC suggested the presence of cysteine, histidine and carboxylate residues at its active site. Cross-reactivity withW. bancrofti-infected sera was demonstrated by Western blotting. ScDSP showed elevated levels of IgE in chronic filarial sera using ELISA. Underin vitroconditions, ScDSP resulted in increased effector function of human eosinophils when stimulated by IgG, which showed a further decrease with increasing enzyme concentration. Results presented here suggest thatS. cerviDSP should be further studied to determine its role in pathogenesis and the persistence of filarial parasite.

2001 ◽  
Vol 173 (1-2) ◽  
pp. 109-120 ◽  
Author(s):  
Xin-Yuan Wang ◽  
Katrin Bergdahl ◽  
Anna Heijbel ◽  
Charlotta Liljebris ◽  
John E. Bleasdale

1994 ◽  
Vol 14 (8) ◽  
pp. 5523-5532
Author(s):  
D R Stover ◽  
K A Walsh

We describe a potential regulatory mechanism for the transmembrane protein-tyrosine phosphatase CD45. Phosphorylation on both tyrosine and serine residues in vitro results in an activation of CD45 specifically toward one artificial substrate but not another. The activation of these kinases appears to be order dependent, as it is enhanced when phosphorylation of tyrosine precedes that of serine but phosphorylation in the reverse order yields no activation. Any of four protein-tyrosine kinases tested, in combination with the protein-serine/threonine kinase, casein kinase II, was capable of mediating this activation in vitro. The time course of phosphorylation of CD45 in response to T-cell activation is consistent with the possibility that this regulatory mechanism is utilized in vivo.


Author(s):  
Chang-An Geng ◽  
Zhen-Tao Deng ◽  
Qian Huang ◽  
Chun-Lei Xiang ◽  
Ji-Jun Chen

AbstractTen 3,5-dimethylcoumarins (1–6 and 8‒11) involving six new ones (1–6), together with a known 3-methylcoumarin (7), were isolated from the aerial parts of three Chelonopsis plants, C. praecox, C. odontochila, and C. pseudobracteata. The structures of the new compounds were determined by extensive HRESIMS, 1D and 2D NMR spectroscopic analyses. According to the substitution at C-5, these coumarins were classified into 5-methyl, 5-hydroxymethyl, 5-formyl, and 5-nor types. All the isolates were assayed for their inhibition on α-glucosidase, protein tyrosine phosphatase 1B, and T-cell protein tyrosine phosphatase in vitro. Graphic Abstract


Author(s):  
Nursamsiar Nursamsiar ◽  
Akbar Awaluddin ◽  
Megawati Megawati ◽  
Yulita M. Soko ◽  
Muhammad Aswad

Senyawa aglikon kurkuligosida A memiliki struktur yang mirip dengan senyawa licoagrochalcone yang terbukti memiliki aktivitas penghambatan yang kuat secara in vitro pada Protein Tyrosine Phosphatase 1B (PTP1B), yang dianggap sebagai target terapeutik untuk pengobatan diabetes melitus tipe 2. Penelitian ini bertujuan untuk mengetahui interaksi antara senyawa aglikon kurkuligosida A dan turunannya dengan PTP1B menggunakan metode simulasi docking. Simulasi docking dilakukan dengan menggunakan perangkat lunak AutoDock 4.2. Hasil docking menunjukan semua senyawa yang diuji dapat berinteraksi dengan sisi aktif PTP1B. Interaksi terbaik ditunjukkan oleh senyawa 31 (3,5-dihidroksibensil-3,5-dinitrobenzoate), senyawa 39 (3,5-dihidroksibensil-4-nitrobenzoate) dan senyawa 52 (4-hidroksibensil-4-nitro bensoat) dengan nilai energi bebas ikatan berturut-turut –9,40 kkal/mol ; –9,19 kkal/mol dan –9,03 kkal/mol. Ketiga senyawa tersebut memiliki interaksi dengan sisi aktif PTP1B dengan residu asam amino Ser216 dan Arg221. Semua senyawa turunan aglikon kurkuligosida A yang diuji juga memiliki pola pengikatan yang sama dengan ligan alami pada PTP1B.


Author(s):  
Thomas Lubben ◽  
Jill Clampit ◽  
Michael Stashko ◽  
James Trevillyan ◽  
Michael R. Jirousek

ChemMedChem ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Stefanie Grosskopf ◽  
Chris Eckert ◽  
Christoph Arkona ◽  
Silke Radetzki ◽  
Kerstin Böhm ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 651-657 ◽  
Author(s):  
Xingwei Sui ◽  
Sanford B. Krantz ◽  
Zhizhuang Zhao

Abstract Polycythemia vera (PV) is a clonal hematologic disease characterized by hyperplasia of the three major bone marrow lineages. PV erythroid progenitor cells display hypersensitivity to several growth factors, which might be caused by an abnormality of tyrosine phosphorylation. In the present study, we have investigated protein tyrosine phosphatase (PTP) activity in highly purified erythroid progenitor cells and found that the total PTP activity in the PV cells was twofold to threefold higher than that in normal cells. Protein separation on anion-exchange and gel-filtration columns showed that the increased activity was due to a major PTP eluted at approximately 170 kD. This enzyme was sensitive to PTP inhibitors and it did not cross-react with antibodies to SHP-1, SHP-2, or CD45. Subcellular fractionation showed that the PTP localized with the membrane fraction, where its activity was increased by threefold in PV erythroid progenitors when compared with normal cells. As the erythroid progenitors progressively matured, activity of the PTP declined rapidly in the normal cells but at a much slower rate in the PV cells. These studies suggest that a potentially novel membrane or membrane-associated PTP, representing a major PTP activity, may have an important role in proliferation and/or survival of human erythroid progenitors and that its hyperactivation in PV erythroid progenitors might be responsible for the increased erythropoiesis in PV patients.


Sign in / Sign up

Export Citation Format

Share Document