scholarly journals Parasitism and phenotypic change in colonial hosts

Parasitology ◽  
2013 ◽  
Vol 140 (11) ◽  
pp. 1403-1412 ◽  
Author(s):  
HANNA HARTIKAINEN ◽  
INÊS FONTES ◽  
BETH OKAMURA

SUMMARYChanges in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9027 ◽  
Author(s):  
Gokhlesh Kumar ◽  
Reinhard Ertl ◽  
Jerri L. Bartholomew ◽  
Mansour El-Matbouli

Bryozoans are aquatic invertebrate moss animals that are found worldwide. Fredericella sultana is a freshwater bryozoan and is the most common primary host of myxozoan parasite, Tetracapsuloides bryosalmonae. However, limited genomic resources are available for this bryozoan, which hampers investigations into the molecular mechanisms of host-parasite interactions. To better understand these interactions, there is a need to build a transcriptome dataset of F. sultana, for functional genomics analysis by large-scale RNA sequencing. Total RNA was extracted from zooids of F. sultana cultivated under controlled laboratory conditions. cDNA libraries were prepared and were analyzed by the Illumina paired-ends sequencing. The sequencing data were used for de novo transcriptome assembly and functional annotation. Approximately 118 million clean reads were obtained, and assembled into 85,544 contigs with an average length of 852 bp, an N50 of 1,085 bp, and an average GC content 51.4%. A total of 23,978 (28%) contigs were annotated using BLASTX analysis. Of these transcripts, 4,400 contigs had highest similarity to brachiopod species Lingula anatina. Based on Gene ontology (GO) annotation, the most highly scored categories of biological process were categorized into cellular process (27%), metabolic process (24%), and biological regulation (8%) in the transcriptome of F. sultana. This study gives first insights into the transcriptome of F. sultana and provides comprehensive genetic resources for the species. We believe that the transcriptome of F. sultana will serve as a useful genomic dataset to accelerate research of functional genomics and will help facilitate whole genome sequencing and annotation. Candidate genes potentially involved in growth, proteolysis, and stress/immunity-response were identified, and are worthy of further investigation.


2020 ◽  
Vol 125 (6) ◽  
pp. 981-991 ◽  
Author(s):  
Pedro E Gundel ◽  
Prudence Sun ◽  
Nikki D Charlton ◽  
Carolyn A Young ◽  
Tom E X Miller ◽  
...  

Abstract Background and Aims The processes that maintain variation in the prevalence of symbioses within host populations are not well understood. While the fitness benefits of symbiosis have clearly been shown to drive changes in symbiont prevalence, the rate of transmission has been less well studied. Many grasses host symbiotic fungi (Epichloë spp.), which can be transmitted vertically to seeds or horizontally via spores. These symbionts may protect plants against herbivores by producing alkaloids or by increasing tolerance to damage. Therefore, herbivory may be a key ecological factor that alters symbiont prevalence within host populations by affecting either symbiont benefits to host fitness or the symbiont transmission rate. Here, we addressed the following questions: Does symbiont presence modulate plant tolerance to herbivory? Does folivory increase symbiont vertical transmission to seeds or hyphal density in seedlings? Do plants with symbiont horizontal transmission have lower rates of vertical transmission than plants lacking horizontal transmission? Methods We studied the grass Poa autumnalis and its symbiotic fungi in the genus Epichloë. We measured plant fitness (survival, growth, reproduction) and symbiont transmission to seeds following simulated folivory in a 3-year common garden experiment and surveyed natural populations that varied in mode of symbiont transmission. Key Results Poa autumnalis hosted two Epichloë taxa, an undescribed vertically transmitted Epichloë sp. PauTG-1 and E. typhina subsp. poae with both vertical and horizontal transmission. Simulated folivory reduced plant survival, but endophyte presence increased tolerance to damage and boosted fitness. Folivory increased vertical transmission and hyphal density within seedlings, suggesting induced protection for progeny of damaged plants. Across natural populations, the prevalence of vertical transmission did not correlate with symbiont prevalence or differ with mode of transmission. Conclusions Herbivory not only mediated the reproductive fitness benefits of symbiosis, but also promoted symbiosis prevalence by increasing vertical transmission of the fungus to the next generation. Our results reveal a new mechanism by which herbivores could influence the prevalence of microbial symbionts in host populations.


2015 ◽  
Vol 282 (1818) ◽  
pp. 20152068 ◽  
Author(s):  
Veronika Bernhauerová ◽  
Luděk Berec ◽  
Daniel Maxin

Early male-killing (MK) bacteria are vertically transmitted reproductive parasites which kill male offspring that inherit them. Whereas their incidence is well documented, characteristics allowing originally non-MK bacteria to gradually evolve MK ability remain unclear. We show that horizontal transmission is a mechanism enabling vertically transmitted bacteria to evolve fully efficient MK under a wide range of host and parasite characteristics, especially when the efficacy of vertical transmission is high. We also show that an almost 100% vertically transmitted and 100% effective male-killer may evolve from a purely horizontally transmitted non-MK ancestor, and that a 100% efficient male-killer can form a stable coexistence only with a non-MK bacterial strain. Our findings are in line with the empirical evidence on current MK bacteria, explain their high efficacy in killing infected male embryos and their variability within and across insect taxa, and suggest that they may have evolved independently in phylogenetically distinct species.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Jack Pilgrim ◽  
Stefanos Siozios ◽  
Matthew Baylis ◽  
Gregory D. D. Hurst

ABSTRACT Rickettsia is a genus of intracellular bacteria which can manipulate host reproduction and alter sensitivity to natural enemy attack in a diverse range of arthropods. The maintenance of Rickettsia endosymbionts in insect populations can be achieved through both vertical and horizontal transmission routes. For example, the presence of the symbiont in the follicle cells and salivary glands of Bemisia whiteflies allows Belli group Rickettsia transmission via the germ line and plants, respectively. However, the transmission routes of other Rickettsia bacteria, such as those in the Torix group of the genus, remain underexplored. Through fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) screening, this study describes the pattern of Torix Rickettsia tissue tropisms in the highland midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Of note is the high intensity of infection of the ovarian suspensory ligament, suggestive of a novel germ line targeting strategy. Additionally, localization of the symbiont in tissues of several developmental stages suggests transstadial transmission is a major route for ensuring maintenance of Rickettsia within C. impunctatus populations. Aside from providing insights into transmission strategies, the presence of Rickettsia bacteria in the fat body of larvae indicates potential host fitness and vector capacity impacts to be investigated in the future. IMPORTANCE Microbial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission, which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several species of biting midges (Culicoides spp.), which transmit bluetongue and Schmallenberg arboviruses. However, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament of Culicoides impunctatus. Infection of this organ suggests the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localization in the fat body of Culicoides impunctatus. As the arboviruses spread by midges often replicate in the fat body, this location implies possible symbiont-virus interactions to be further investigated.


mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Jeremy K. Herren ◽  
Juan C. Paredes ◽  
Fanny Schüpfer ◽  
Bruno Lemaitre

ABSTRACTSpiroplasmais a diverse bacterial clade that includes many vertically transmitted insect endosymbionts, includingSpiroplasma poulsonii, a natural endosymbiont ofDrosophila melanogaster. These bacteria persist in the hemolymph of their adult host and exhibit efficient vertical transmission from mother to offspring. In this study, we analyzed the mechanism that underlies their vertical transmission, and here we provide strong evidence that these bacteria use the yolk uptake machinery to colonize the germ line. We show thatSpiroplasmareaches the oocyte by passing through the intercellular space surrounding the ovarian follicle cells and is then endocytosed into oocytes within yolk granules during the vitellogenic stages of oogenesis. Mutations that disrupt yolk uptake by oocytes inhibit verticalSpiroplasmatransmission and lead to an accumulation of these bacteria outside the oocyte. Impairment of yolk secretion by the fat body results inSpiroplasmanot reaching the oocyte and a severe reduction of vertical transmission. We propose a model in whichSpiroplasmafirst interacts with yolk in the hemolymph to gain access to the oocyte and then uses the yolk receptor, Yolkless, to be endocytosed into the oocyte. Cooption of the yolk uptake machinery is a powerful strategy for endosymbionts to target the germ line and achieve vertical transmission. This mechanism may apply to other endosymbionts and provides a possible explanation for endosymbiont host specificity.IMPORTANCEMost insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. Studies have shown that many facultative endosymbionts, includingSpiroplasma, confer protection against different classes of parasites on their hosts and therefore are attractive tools for the control of vector-borne diseases. The ability to be efficiently transmitted from females to their offspring is the key feature shaping associations between insects and their inherited endosymbionts, but to date, little is known about the mechanisms involved. In oviparous animals, yolk accumulates in developing eggs and serves to meet the nutritional demands of embryonic development. Here we show thatSpiroplasma coopts the yolk transport and uptake machinery to colonize the germ line and ensure efficient vertical transmission. The uptake of yolk is a female germ line-specific feature and therefore an attractive target for cooption by endosymbionts that need to maintain high-fidelity maternal transmission.


2003 ◽  
Vol 15 (1) ◽  
pp. 3-7 ◽  
Author(s):  
Camilla Björkman ◽  
Milton M. McAllister ◽  
Jenny Frössling ◽  
Katarina Näslund ◽  
Felicia Leung ◽  
...  

Point-source infections are most likely the cause for Neospora caninum–induced abortion outbreaks in cattle, whereas an increased annual abortion rate may be a consequence of vertical transmission. The aims of the present study were to examine the reproductive effects of neosporosis in a beef herd for 3 years, after a point-source outbreak and to use IgG avidity serology to examine the chronicity of infections and patterns of transmission. During the study, 76–78% of animals were seropositive for N. caninum. The pregnancy rate varied from 88% to 94%, without any reduction in the pregnancy rate of seropositive cows compared with seronegative cows. The annual abortion rate was 2.5–5.5%, and all but 1 abortion occurred in seropositive dams. The efficiency of vertical transmission was estimated to be 85%. Several calves, born to seronegative dams, were seropositive at 6–13 months of age, indicating a 22% mean annual rate of horizontal transmission. The mean avidity in seropositive cows increased from 30 during the initial outbreak to 74 after 3 years. The mode of IgG avidity was 21–40 during the initial abortion outbreak, 41–60 after 1 year, and 61–80 after 2 and 3 years. The results reveal high annual rates of both vertical and horizontal transmission of N. caninum in a herd of beef cows and provide further validation on the ability of the N. caninum IgG avidity ELISA to accurately assess the chronicity of infection.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cynthia Tamandjou Tchuem ◽  
Mark Fredric Cotton ◽  
Etienne Nel ◽  
Richard Tedder ◽  
Wolfgang Preiser ◽  
...  

Abstract Background Whilst much attention is given to eliminating HIV mother-to-child transmission (MTCT), little has been done to ensure the same for hepatitis B virus (HBV) transmission. The introduction of HBV immunization at six weeks of age has reduced HBV horizontal transmission in South Africa. However, in order to eliminate HBV MTCT, further interventions are needed. The risk of hepatitis C virus (HCV) MTCT in HIV-infected (HIV+) African women is not yet well described. This study aimed to determine the rate of HBV and HCV vertical transmission in HIV-exposed infants in South Africa. Methods Serum samples from infants enrolled in an isoniazid prevention study (P1041) were screened for HBV and HCV serology markers; screening was performed on samples collected at approximately 60 weeks of age of the infants. HBV DNA was quantified in HBsAg positive samples and HBV strains characterized through gene sequencing. All HCV antibody samples with inconclusive results underwent molecular testing. Results Three of 821 infants were positive for both HBsAg and HBV DNA. All HBV strains belonged to HBV sub-genotype A1. The rtM204I mutation associated with lamivudine resistance was identified in one infant, a second infant harboured the double A1762T/G1764A BCP mutation. Phylogenetic analysis showed clustering between mother and infant viral genomic sequences. Twenty-one of 821 HIV-exposed infants tested had inconclusive HCV antibody results, none were HCV PCR positive. Conclusions This study suggests that HBV vertical transmission is likely to be occurring in HIV-exposed infants in South Africa.. A more robust strategy of HBV prevention, including birth dose vaccination, is required to eradicate HBV MTCT. HCV infection was not detected.


2020 ◽  
Author(s):  
Jack Pilgrim ◽  
Stefanos Siozios ◽  
Matthew Baylis ◽  
Gregory D. D. Hurst

AbstractRickettsia are a group of intracellular bacteria which can manipulate host reproduction and alter sensitivity to natural enemy attack in a diverse range of arthropods. The maintenance of Rickettsia endosymbionts in insect populations can be achieved through both vertical and horizontal transmission routes. For example, the presence of the symbiont in the follicle cells and salivary glands of Bemisia whiteflies allows Belli group Rickettsia transmission via the germline and plants, respectively. However, the transmission routes of other Rickettsia, such as those in the Torix group of the genus, remain underexplored. Through fluorescence in-situ hybridisation (FISH) and transmission electron microscopy (TEM) screening, this study describes the pattern of Torix Rickettsia tissue tropisms in the highland midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Of note is high intensity of infection of the ovarian suspensory ligament, suggestive of a novel germline targeting strategy. Additionally, localisation of the symbiont in tissues of several developmental stages suggests transstadial transmission is a major route of ensuring maintenance of Rickettsia within C. impunctatus populations. Aside from providing insights into transmission strategies, Rickettsia presence in the fat body of larvae indicates potential host fitness and vector capacity impacts to be investigated in the future.Importance StatementMicrobial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several vector species of biting midges (Culicoides spp.), however, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament and the ovarian epithelial sheath of Culicoides impunctatus. Infection of these organs suggest the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localisation in the fat body of Culicoides impunctatus. As viruses spread by midges often replicate in the fat body, this implies possible vector competence effects to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document