scholarly journals Crithidia bombi can infect two solitary bee species while host survivorship depends on diet

Parasitology ◽  
2020 ◽  
pp. 1-8
Author(s):  
Laura L. Figueroa ◽  
Cali Grincavitch ◽  
Scott H. McArt
Keyword(s):  

Abstract

2021 ◽  
Author(s):  
Abby E. Davis ◽  
Kaitlin R. Deutsch ◽  
Alondra M. Torres ◽  
Mesly J. Mata Loya ◽  
Lauren Cody ◽  
...  

Abstract Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that could be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abby E. Davis ◽  
Kaitlin R. Deutsch ◽  
Alondra M. Torres ◽  
Mesly J. Mata Loya ◽  
Lauren V. Cody ◽  
...  

AbstractFlowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.


2021 ◽  
Vol 24 (4) ◽  
pp. 668-675 ◽  
Author(s):  
Felix Klaus ◽  
Teja Tscharntke ◽  
Gabriela Bischoff ◽  
Ingo Grass

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katharina Beer ◽  
Mariela Schenk ◽  
Charlotte Helfrich-Förster ◽  
Andrea Holzschuh

AbstractLife on earth adapted to the daily reoccurring changes in environment by evolving an endogenous circadian clock. Although the circadian clock has a crucial impact on survival and behavior of solitary bees, many aspects of solitary bee clock mechanisms remain unknown. Our study is the first to show that the circadian clock governs emergence in Osmia bicornis, a bee species which overwinters as adult inside its cocoon. Therefore, its eclosion from the pupal case is separated by an interjacent diapause from its emergence in spring. We show that this bee species synchronizes its emergence to the morning. The daily rhythms of emergence are triggered by temperature cycles but not by light cycles. In contrast to this, the bee’s daily rhythms in locomotion are synchronized by light cycles. Thus, we show that the circadian clock of O. bicornis is set by either temperature or light, depending on what activity is timed. Light is a valuable cue for setting the circadian clock when bees have left the nest. However, for pre-emerged bees, temperature is the most important cue, which may represent an evolutionary adaptation of the circadian system to the cavity-nesting life style of O. bicornis.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Michael Brysch-Herzberg ◽  
Andrea Tobias ◽  
Martin Seidel ◽  
Rupert Wittmann ◽  
Elke Wohlmann ◽  
...  
Keyword(s):  

2017 ◽  
Vol 46 (5) ◽  
pp. 1070-1079 ◽  
Author(s):  
Brielle J Fischman ◽  
Theresa L Pitts-Singer ◽  
Gene E Robinson

Sign in / Sign up

Export Citation Format

Share Document