osmia bicornis
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Jens Van Eeckhoven ◽  
Gavin J. Horsburgh ◽  
Deborah A. Dawson ◽  
Kathryn Mayer ◽  
Amanda Bretman ◽  
...  

Abstract Background Solitary bees, such as the red mason bee (Osmia bicornis), provide important ecosystem services including pollination. In the face of global declines of pollinator abundance, such haplodiploid Hymenopterans have a compounded extinction risk due to the potential for limited genetic diversity. In order to assess the genetic diversity of Osmia bicornis populations, we developed microsatellite markers and characterised them in two populations. Methods and results Microsatellite sequences were mined from the recently published Osmia bicornis genome, which was assembled from DNA extracted from a single male bee originating from the United Kingdom. Sequences were identified that contained dinucleotide, trinucleotide, and tetranucleotide repeat regions. Seventeen polymorphic microsatellite markers were designed and tested, sixteen of which were developed into four multiplex PCR sets to facilitate cheap, fast and efficient genotyping and were characterised in unrelated females from Germany (n = 19) and England (n = 14). Conclusions The microsatellite markers are highly informative, with a combined exclusion probability of 0.997 (first parent), which will enable studies of genetic structure and diversity to inform conservation efforts in this bee.


2021 ◽  
pp. 118610
Author(s):  
Jaya Sravanthi Mokkapati ◽  
Agnieszka J. Bednarska ◽  
Maciej Choczyński ◽  
Ryszard Laskowski

2021 ◽  
Author(s):  
Jannik Sven Moellmann ◽  
Thomas Joseph Colgan

Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite its importance, for certain ecologically important species, such as solitary bees, our understanding of the genomic basis and molecular mechanisms underlying immune potential, and how intrinsic and extrinsic factors may influence immune gene expression is lacking. Here, to improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterised putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionary conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, including immune genes involved in antiviral-defence. Interestingly, the expression of certain immune genes were also affected by exposure to common neonicotinoids, particularly genes related to haemocyte proliferation. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.


Author(s):  
Florian Straub ◽  
Ihotu Joy Orih ◽  
Judith Kimmich ◽  
Manfred Ayasse

Insect species richness and abundance has declined rapidly over the last few decades. Various stressors, such as the conversion of natural habitats, climate change, land-use intensification, agrochemicals and pathogens, are thought to be major factors in this decline. We treated female bees of two common pollinator species in Europe, Osmia bicornis and Bombus terrestris, with a field-realistic dose of the neonicotinoid clothianidin. We tested its effects on the foraging behavior of O. bicornis under semi-natural conditions and on the antennal sensitivity of both bee species to common floral volatiles by using electroantennography. Clothianidin negatively affected the foraging behavior in O. bicornis by decreasing the number of flowers visited per foraging flight and by increasing the time per flower visit and the searching time between two flowers. It also decreased the antennal sensitivity to 2-phenylethanol in the two bee species. Thus, clothianidin is clearly a threat for bees via its effects on their foraging behavior and antennal sensitivity and is hence probably detrimental for pollination and the reproductive success of bees.


2021 ◽  
pp. 127250
Author(s):  
Aleksandra Splitt ◽  
Piotr Skórka ◽  
Aneta Strachecka ◽  
Mikołaj Borański ◽  
Dariusz Teper

Apidologie ◽  
2021 ◽  
Author(s):  
Monika Ostap-Chec ◽  
Justyna Kierat ◽  
Karolina Kuszewska ◽  
Michal Woyciechowski

AbstractEctotherms usually require a narrow range of thermal conditions for development; thus, parental selection of oviposition sites is crucial. In a field experiment, we investigated female solitary red mason bee (Osmia bicornis) preferences for potential nest site temperatures and their effects on offspring development. The results showed that bees detected and avoided nest sites with high temperatures (28°C) and often chose cooler (24°C) or ambient temperatures (average 18–20°C). This is a protective behaviour because offspring survival decreases with increasing nest temperature, mostly due to mortality at the egg stage. Elevated temperatures also led to weight loss in adult bees. However, hot nest temperatures appeared to deter adults or kill parasite larvae, as the highest numbers of parasites were observed in unheated nests. We concluded that choosing the proper temperature for nests is an important element in bee life strategies, especially in warming environments.


Sign in / Sign up

Export Citation Format

Share Document