crithidia bombi
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 17 (12) ◽  
pp. e1009604
Author(s):  
Pratha Sah ◽  
Michael Otterstatter ◽  
Stephan T. Leu ◽  
Sivan Leviyang ◽  
Shweta Bansal

The spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling the dynamics of infectious disease spread through contact networks, however, can be challenging due to limited knowledge of how an infectious disease spreads and its transmission rate. We developed a novel statistical tool, INoDS (Identifying contact Networks of infectious Disease Spread) that estimates the transmission rate of an infectious disease outbreak, establishes epidemiological relevance of a contact network in explaining the observed pattern of infectious disease spread and enables model comparison between different contact network hypotheses. We show that our tool is robust to incomplete data and can be easily applied to datasets where infection timings of individuals are unknown. We tested the reliability of INoDS using simulation experiments of disease spread on a synthetic contact network and find that it is robust to incomplete data and is reliable under different settings of network dynamics and disease contagiousness compared with previous approaches. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumblebee colonies and Salmonella in wild Australian sleepy lizard populations. INoDS thus provides a novel and reliable statistical tool for identifying transmission pathways of infectious disease spread. In addition, application of INoDS extends to understanding the spread of novel or emerging infectious disease, an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12486
Author(s):  
Edward A. Straw ◽  
Mark J.F. Brown

Background Glyphosate is the world’s most used pesticide and it is used without the mitigation measures that could reduce the exposure of pollinators to it. However, studies are starting to suggest negative impacts of this pesticide on bees, an essential group of pollinators. Accordingly, whether glyphosate, alone or alongside other stressors, is detrimental to bee health is a vital question. Bees are suffering declines across the globe, and pesticides, including glyphosate, have been suggested as being factors in these declines. Methods Here we test, across a range of experimental paradigms, whether glyphosate impacts a wild bumble bee species, Bombus terrestris. In addition, we build upon existing work with honey bees testing glyphosate-parasite interactions by conducting fully crossed experiments with glyphosate and a common bumble bee trypanosome gut parasite, Crithidia bombi. We utilised regulatory acute toxicity testing protocols, modified to allow for exposure to multiple stressors. These protocols are expanded upon to test for effects on long term survival (20 days). Microcolony testing, using unmated workers, was employed to measure the impacts of either stressor on a proxy of reproductive success. This microcolony testing was conducted with both acute and chronic exposure to cover a range of exposure scenarios. Results We found no effects of acute or chronic exposure to glyphosate, over a range of timespans post-exposure, on mortality or a range of sublethal metrics. We also found no interaction between glyphosate and Crithidia bombi in any metric, although there was conflicting evidence of increased parasite intensity after an acute exposure to glyphosate. In contrast to published literature, we found no direct impacts of this parasite on bee health. Our testing focussed on mortality and worker reproduction, so impacts of either or both of these stressors on other sublethal metrics could still exist. Conclusions Our results expand the current knowledge on glyphosate by testing a previously untested species, Bombus terrestris, using acute exposure, and by incorporating a parasite never before tested alongside glyphosate. In conclusion our results find that glyphosate, as an active ingredient, is unlikely to be harmful to bumble bees either alone, or alongside Crithidia bombi.


2021 ◽  
Author(s):  
Carolina Bartolomé ◽  
María Buendía-Abad ◽  
Concepción Ornosa ◽  
Pilar De la Rúa ◽  
Raquel Martín-Hernández ◽  
...  

AbstractTrypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) — and a mutation frequency distribution compatible with a population expansion after a bottleneck — that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abby E. Davis ◽  
Kaitlin R. Deutsch ◽  
Alondra M. Torres ◽  
Mesly J. Mata Loya ◽  
Lauren V. Cody ◽  
...  

AbstractFlowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 884
Author(s):  
Metka Pislak Ocepek ◽  
Ivan Toplak ◽  
Urška Zajc ◽  
Danilo Bevk

Slovenia has a long tradition of beekeeping and a high density of honeybee colonies, but less is known about bumblebees and their pathogens. Therefore, a study was conducted to define the incidence and prevalence of pathogens in bumblebees and to determine whether there are links between infections in bumblebees and honeybees. In 2017 and 2018, clinically healthy workers of bumblebees (Bombus spp.) and honeybees (Apis mellifera) were collected on flowers at four different locations in Slovenia. In addition, bumblebee queens were also collected in 2018. Several pathogens were detected in the bumblebee workers using PCR and RT-PCR methods: 8.8% on acute bee paralysis virus (ABPV), 58.5% on black queen cell virus (BQCV), 6.8% on deformed wing virus (DWV), 24.5% on sacbrood bee virus (SBV), 15.6% on Lake Sinai virus (LSV), 16.3% on Nosema bombi, 8.2% on Nosema ceranae, 15.0% on Apicystis bombi and 17.0% on Crithidia bombi. In bumblebee queens, only the presence of BQCV, A. bombi and C. bombi was detected with 73.3, 26.3 and 33.3% positive samples, respectively. This study confirmed that several pathogens are regularly detected in both bumblebees and honeybees. Further studies on the pathogen transmission routes are required.


2021 ◽  
Author(s):  
Abby E. Davis ◽  
Kaitlin R. Deutsch ◽  
Alondra M. Torres ◽  
Mesly J. Mata Loya ◽  
Lauren Cody ◽  
...  

Abstract Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that could be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities.


Author(s):  
Callum D. Martin ◽  
Michelle T. Fountain ◽  
Mark J. F. Brown

AbstractCommercially-reared bumblebee colonies provide pollination services to numerous crop species globally. These colonies may harbour parasites which can spill-over to wild bee species. However, the potential for parasites to spread from wild to commercial bumblebees, which could then lead to parasite spill-back, is poorly understood. To investigate this, parasite-free commercial Bombus terrestris audax colonies, which are used commercially for strawberry pollination, were placed into seasonal strawberry crops for either 6- or 8-week blocks across two key time periods, early spring and early summer. Bumblebees were removed from colonies weekly and screened for the presence of parasites. In the early spring placement, only one parasite, the highly virulent neogregarine Apicystis bombi, was detected at a low prevalence (0.46% across all bees screened). In contrast, all colonies placed in the crop in the early summer became infected. A trypanosome, Crithidia bombi, and A. bombi were the most prevalent parasites across all samples, reaching peak prevalence in screened bees of 39.39% and 18.18% respectively at the end of the experimental period. The prevalence of A. bombi was greater than most UK records from wild bumblebees, suggesting that commercial colonies could enhance levels of A. bombi infection in wild bees through spill-back. Studies on larger geographical scales with different commercial colony densities are required to fully assess spill-back risk. However, seasonal management, to minimise spill-back opportunities, and treatment of commercial colonies to prevent infection, could be implemented to manage the potential risks of parasite spill-back to wild bees.Implications for insect conservation Our results show that commercial bumblebee populations do pick up infections, most likely from wild bees, and that these infections can reach prevalences where they may pose a threat to wild bees via parasite spill-back. More research is required to clarify the extent of this potential threat.


Parasitology ◽  
2020 ◽  
pp. 1-8
Author(s):  
Laura L. Figueroa ◽  
Cali Grincavitch ◽  
Scott H. McArt
Keyword(s):  

Abstract


Parasitology ◽  
2020 ◽  
Vol 147 (12) ◽  
pp. 1290-1304 ◽  
Author(s):  
Lyna Ngor ◽  
Evan C. Palmer-Young ◽  
Rodrigo Burciaga Nevarez ◽  
Kaleigh A. Russell ◽  
Laura Leger ◽  
...  

AbstractRecent declines of wild pollinators and infections in honey, bumble and other bee species have raised concerns about pathogen spillover from managed honey and bumble bees to other pollinators. Parasites of honey and bumble bees include trypanosomatids and microsporidia that often exhibit low host specificity, suggesting potential for spillover to co-occurring bees via shared floral resources. However, experimental tests of trypanosomatid and microsporidial cross-infectivity outside of managed honey and bumble bees are scarce. To characterize potential cross-infectivity of honey and bumble bee-associated parasites, we inoculated three trypanosomatids and one microsporidian into five potential hosts – including four managed species – from the apid, halictid and megachilid bee families. We found evidence of cross-infection by the trypanosomatids Crithidia bombi and C. mellificae, with evidence for replication in 3/5 and 3/4 host species, respectively. These include the first reports of experimental C. bombi infection in Megachile rotundata and Osmia lignaria, and C. mellificae infection in O. lignaria and Halictus ligatus. Although inability to control amounts inoculated in O. lignaria and H. ligatus hindered estimates of parasite replication, our findings suggest a broad host range in these trypanosomatids, and underscore the need to quantify disease-mediated threats of managed social bees to sympatric pollinators.


Sign in / Sign up

Export Citation Format

Share Document