scholarly journals A Gas Ion Source for Radiocarbon Measurements at 200 kV

Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 307-314 ◽  
Author(s):  
M Ruff ◽  
L Wacker ◽  
H W Gäggeler ◽  
M Suter ◽  
H-A Synal ◽  
...  

The novel tabletop miniaturized radiocarbon dating system (MICADAS) at ETH Zurich features a hybrid Cs sputter negative ion source for the measurement of solid graphite and gaseous CO2 samples. The source produces stable currents of up to 6 μA C− out of gaseous samples with an efficiency of 3–6%. A gas feeding system has been set up that enables constant dosing of CO2 into the Cs sputter ion source and ensures stable measuring conditions. The system is based on a syringe in which CO2 gas is mixed with He and then pressed continuously into the ion source at a constant flow rate. Minimized volumes allow feeding samples of 3–30 μg carbon quantitatively into the ion source. In order to test the performance of the system, several standards and blanks have successfully been measured. The ratios of 14C/12C could be repeated within statistical errors to better than 1.0% and the 13C/12C ratios to better than 0.2%. The blank was <1 pMC.

2016 ◽  
Vol 23 (6) ◽  
pp. 617-624
Author(s):  
Yan Shilin ◽  
Yan Fei ◽  
Li Dequan ◽  
Li Yongjing

AbstractFibre fabrics in liquid composite moulding can be considered as dual-scale porous media. In different gap scales, an unsaturated flow is produced during the mould filling process. This particular flow behaviour deviates from the traditional Darcy’s law, which is used to calculate the filling pressure and will cause errors. To prove the mechanism of this unsaturated flow, an experimental device was set up with a one-dimensional constant flow rate. The influencing factors, such as injected media, flow velocity and fibre fabric, were investigated in this study. Based on the experimental data, several useful conclusions were drawn, providing good references for optimising the process parameters and controlling the product quality.


2018 ◽  
Vol 11 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola ◽  
Fulvio Palmieri ◽  
Roberto Pompei

Background:The paper deals with a diesel common rail nozzle in which a novel orifice layout is implemented.Objective:Its influence on the nozzle mechanical-hydraulic behavior and on the spray shape transient development is experimentally investigated.Methods:In the research, a solenoid injector for light duty diesel engines is equipped with the novel nozzle prototype and tested. The prototype layout is described, pointing out the features of the nozzle orifices, in which a Slot cross-section is adopted; the investigation is accomplished extending the hydraulic tests and the spray visualizations to a reference nozzle with standard holes. The influence of the hole layout on the mechanical-hydraulic behavior of the nozzle is assessed by experimental analysis based on the rate of injection measurement, in comparison with the reference nozzle. Once the hydraulic behavior of the novel nozzle has been characterized in terms of mass flow rate, the slot influence on the spray shape is assessed analyzing the macroscopic features such as the penetration distance and the spray angle, in non evaporative conditions. The study is carried out under transient injection conditions, for different injection pressures, up to 1400 bar.Results:The results on spray characteristics also provide reference information to set up spray models suited to take the Slot orifice into account.


2012 ◽  
Vol 9 (3) ◽  
Author(s):  
Il Doh ◽  
Young-Ho Cho

A pumpless fuel supply using pressurized fuel with autonomous flow regulation valves is presented. Since micropumps and their control circuitry consume a portion of the electrical power generated in fuel cells, fuel supply without micropumps makes it possible to provide more efficient and inexpensive fuel cells than conventional ones. The flow regulation valves in the present system maintain the constant fuel flow rate from the pressurized fuel chamber even though the fuel pressure decreases. They autonomously adjust fluidic resistance of the channel according to fuel pressure so as to maintain constant flow rate. Compared to previous pumpless fuel supply methods, the present method offers more uniform fuel flow without any fluctuation using a simple structure. The prototypes were fabricated by a polymer micromolding process. In the experimental study using the pressurized deionized water, prototypes with pressure regulation valves showed constant flow rate of 5.38 ± 0.52 μl/s over 80 min and 5.89 ± 0.62 μl/s over 134 min, for the initial pressure in the fuel chamber of 50 and 100 kPa, respectively, while the other prototypes having the same fluidic geometry without flow regulation valves showed higher and gradually decreasing flow rate. The present pumpless fuel supply method providing constant flow rate with autonomous valve operation will be beneficial for the development of next-generation fuel cells.


2018 ◽  
Vol 851 ◽  
pp. 507-544 ◽  
Author(s):  
Roberto Inghilesi ◽  
Claudia Adduce ◽  
Valentina Lombardi ◽  
Federico Roman ◽  
Vincenzo Armenio

Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.


2011 ◽  
Vol 391-392 ◽  
pp. 1080-1084
Author(s):  
Nan Li ◽  
Feng Chai ◽  
Lei Chen ◽  
Shu Kang Cheng

Effect of rotating electromagnetic field on the conductivity of aqueous NaCl solution was investigated by experiments. NaCl solution was circulated at a constant flow rate in the flow loop with a rotating-electromagnetic generating device for a period of time. Then conductivity of NaCl solution was measured at different NaCl solution contractions and rotating electromagnetic fields. Simultaneously, the conductivity was determined for NaCl solution untreated magnetically, as a reference. It was found that the rotating electromagnetic field influenced conductivity of aqueous NaCl solution and made it increased. The mechanism of the effect of the rotating electromagnetic field on conductivity of NaCl solution was also discussed.


Sign in / Sign up

Export Citation Format

Share Document