liquid composite moulding
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
pp. 152808372110388
Author(s):  
Venkateswaran Santhanakrishnan Balakrishnan ◽  
Manoja Rao Yellur ◽  
Janina Juliane Roesch ◽  
Lars Ulke-Winter ◽  
Holger Seidlitz

In the liquid composite moulding (LCM) process, fabric is draped over the mould surface and a resin is injected under pressure to develop a composite laminate. Wrinkling is one of the most common flaws that occurs during the draping of the fabric. Wrinkling of the fabric within the composite could severely reduce the quality of the finished composite laminate. Thus, to develop a high-quality composite laminate, exact prediction of fabric wrinkling behaviour is necessary. The aim of the paper is to investigate the draping behaviour of carbon fabric. Carbon fabric with an areal density of 245 g/m2 is used in the study. Both experimental and numerical investigations were performed. An experimental setup was developed to predict the draping behaviour of the carbon fabric used in the study. LS-DYNA/Explicit solver is used to achieve macro level draping simulation. Material model MAT_REINFORCED_THERMOPLASTIC [MAT_249] offers the possibility to simulate the forming behaviour of a thermoplastic material. To simulate dry fabrics using MAT_249, a very low properties are used for the matrix in the material model. To capture the forming behaviour of fabric, an intensive material characterization has been performed. Tensile and shear properties of the fabrics were determined using uniaxial and picture frame tests, respectively. Influence of the position of the integration points from the mid surface on bending behaviour is studied and calibrated using a simple test.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 405
Author(s):  
Hatim Alotaibi ◽  
Masoud Jabbari ◽  
Constantinos Soutis

Permeability is a crucial flow parameter in liquid composite moulding (LCM), which is required to predict fibre impregnation, void formation and resin back flow. This work investigates the dual-scale (micro- and meso-) nature of permeability during resin infusion into woven fabric by incorporating the intra tow flow where the degree of local tow curvature (tow/yarn undulation) is taken into account. The mesoscopic permeability of a dual-scale porous media in a unit cell is estimated using Darcy’s law, where the Gebart analytical model is applied for the intra tow flow in longitudinal and transverse directions with respect to distinct fibre packing arrangements. The results suggest that for a low fibre volume fraction (≤42%), the degree of local curvature at the mesoscale can be neglected. However, for a high fibre volume fraction (>42%) and a higher fibre bundle curvature, the proposed model should be adopted, since the resin flow is affected by a mesoscopic tow curvature that could result in around 14% error in predicting permeability. It is shown that the permeability results of the current study are in good agreement with and in the range of the retrieved available experimental data from the literature.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4811
Author(s):  
Delphin Pantaloni ◽  
Alain Bourmaud ◽  
Christophe Baley ◽  
Mike J. Clifford ◽  
Michael H. Ramage ◽  
...  

Liquid composite moulding (LCM) of plant fibre composites has gained much attention for the development of structural biobased composites. To produce quality composites, better understanding of the resin impregnation process and flow behaviour in plant fibre reinforcements is vital. By reviewing the literature, we aim to identify key plant fibre reinforcement-specific factors that influence, if not govern, the mould filling stage during LCM of plant fibre composites. In particular, the differences in structure (physical and biochemical) for plant and synthetic fibres, their semi-products (i.e., yarns and rovings), and their mats and textiles are shown to have a perceptible effect on their compaction, in-plane permeability, and processing via LCM. In addition to examining the effects of dual-scale flow, resin absorption, (subsequent) fibre swelling, capillarity, and time-dependent saturated and unsaturated permeability that are specific to plant fibre reinforcements, we also review the various models utilised to predict and simulate resin impregnation during LCM of plant fibre composites.


Sign in / Sign up

Export Citation Format

Share Document