14C and 10Be in Dust Deposited During the Storm of 16–17 April 2006 in Beijing

Radiocarbon ◽  
2013 ◽  
Vol 55 (3) ◽  
pp. 1790-1800
Author(s):  
C D Shen ◽  
W X Yi ◽  
P Ding ◽  
K X Liu ◽  
X M Xu

The concentrations of 10Be and 14C and values of δ13C in samples collected during a major dust storm in Beijing on 16–17 April 2006 were studied. The 10Be concentrations ranged from 1.69 × 108 to 2.07 × 108 atom/g, 14C ages for black carbon (BC) ranged from 3001 to 5181 yr BP and for total inorganic carbon (TIC) from 8464 to 9119 yr BP, and δ13C values for BC ranged from -23.15% to -23.80% and for TIC from -5.39% to -5.98%. A comparison of BC content and δ13C value between the dust, surface soil in the dust source region, and aerosols in Beijing indicated that BC in the dust deposited in Beijing is significantly incorporated by aerosol BC during the dust transportation. Based on the 14C ages of BC, the proportion of fossil-fuel-derived BC was 0.35–0.49 of the total. In contrast to BC, the TIC deposited in Beijing can be firmly related to the source area and δ13C was not significantly modified during its transportation. According to the 14C ages of TIC, the proportion of the secondary carbonate in the dust was from 0.63 to 0.70. The results confirm that 14C of TIC is another useful tracer to indicate the source region of dust besides the content and δ13C value of TIC from the arid and semi-arid regions of China.

2011 ◽  
Vol 11 (1) ◽  
pp. 2843-2871
Author(s):  
Y. Igarashi ◽  
H. Fujiwara ◽  
D. Jugder

Abstract. The Asian dust source region may be expanding primarily as a result of recent climate change, especially during the 2000s. This change was investigated by examining anthropogenic radionuclides contained in surface soil samples from Mongolia. Surface soil was globally labeled by radioactive fallout from nuclear testing during the late 1950s and early 1960s. There are no current direct sources for anthropogenic radionuclides in the air, so the radionuclides in the atmosphere are mainly carried by dust from wind-blown surface soil, that is, aeolian dust. Asian dust carries 90Sr, 137Cs, and other anthropogenic radionuclides; the heaviest deposition occurs in spring and has been recorded in Japan since the early 1990s. The composition of anthropogenic radionuclides in atmospheric depositions would be affected by a change in the dust source. Previous studies of atmospheric depositions at long-term monitoring sites (e.g. in Tsukuba, Japan) have detected changes in the 137Cs/90Sr ratio and in the specific activity of the radionuclides. These changes in the composition of observed atmospheric depositions should be a reflection for a change in the climatic conditions of the dust source region. To investigate this dust source change, a field survey for radionuclides (90Sr and 137Cs) in surface soil samples was conducted in September 2007 in the eastern and southern regions of Mongolia, where dust storms have occurred more frequently since 2000. It was found that specific activities of both radionuclides as well as the 137Cs/90Sr ratio in the surface soil correlated well with annual average precipitation in the Mongolian desert-steppe zone. The higher specific activities and the higher 137Cs/90Sr ratio were found in the grassland region with the greater precipitation. This finding suggests that the increased specific activities and the activity ratio detected in the atmospheric depositions in Japan during years of the frequent Asian dust transport event since 2000 should be a sign of grassland degradation.


2011 ◽  
Vol 11 (14) ◽  
pp. 7069-7080 ◽  
Author(s):  
Y. Igarashi ◽  
H. Fujiwara ◽  
D. Jugder

Abstract. Recent climate change, especially during the 2000s, may be the primary reason for the expansion of the Asian dust source region. The change in the dust source region was investigated by examining anthropogenic radionuclides contained in surface soil samples from Mongolia. Surface soil was globally labeled by radioactive fallout from nuclear testing during the late 1950s and early 1960s, but there are no current direct sources for anthropogenic radionuclides in the air (before the Fukushima nuclear power plant accident in 2011). Radionuclides in the atmosphere are therefore carried mainly by wind-blown dust from surface soil, that is, aeolian dust. Asian dust carries traces of 90Sr, 137Cs, and other anthropogenic radionuclides; the heaviest deposition occurs in spring and has been recorded in Japan since the early 1990s. The composition of anthropogenic radionuclides in atmospheric depositions would be affected by a change in the dust source. Previous studies of atmospheric deposition at long-term monitoring sites (e.g. in Tsukuba, Japan) have detected changes in the 137Cs/90Sr ratio and in the specific activity of the radionuclides. These changes in the composition of observed atmospheric depositions are supposed to reflect changes in the climatic conditions of the dust source region. To investigate this dust source change, we conducted a field survey of radionuclides (90Sr and 137Cs) in surface soil samples in September 2007 in the eastern and southern regions of Mongolia, where dust storms have occurred more frequently since 2000. The specific activities of both radionuclides as well as the 137Cs/90Sr ratio in the surface soil were well correlated with annual average precipitation in the Mongolian desert-steppe zone. Higher specific activities and a higher 137Cs/90Sr ratio were found in grassland regions that experienced greater precipitation. These findings suggest that the increased specific activities and the activity ratio detected in atmospheric depositions in Japan during years with frequent Asian dust transport events in the 2000s are a sign of grassland degradation.


Radiocarbon ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 921-931 ◽  
Author(s):  
Mebus A. Geyh ◽  
U. Schotterer ◽  
M. Grosjean

Conventional radiocarbon dates for sediment samples from aquatic systems and of coeval terrestrial samples deviate from each other due to the reservoir effect. The reservoir correction is usually assumed to be constant with time for a specific aquatic system. Our studies confirm that seasonal and secular changes are frequent and are governed by the limnological conditions. Lakes have two principal sources of 14C: atmospheric CO2 and the total dissolved inorganic carbon (TDIC) of the entering groundwater and runoff. The former has values of ca. 100 pMC; the latter usually has a 14C value well below 100 pMC. Atmospheric CO2 enters the lake by exchange via its surface. The proportions of these two kinds of input determine the magnitude of the reservoir correction in freshwater lakes. It is mainly a function of the volume/surface ratio of the lake and, consequently a function of the water depth. The surface of lakes with outflow does not change when sedimentation decreases the depth of the water. The depth of Schleinsee Lake in southern Germany has decreased from 30 to 15 m since ca. 9000 bp. As a result, the reservoir correction has decreased from ca. -1550 to -580 yr. In contrast, the depth of Lake Proscansko in Croatia increased with growth of the travertine dam and the reservoir correction changed from ca. -1790 to -2650 yr during the last 8800 yr. The largest fluctuations of lake levels occur in closed lakes in arid regions when the climate changes from humid to arid and vice versa. As a result, the reservoir correction of the 14C dates for the total organic fraction from Lejía Lake in the Atacama Desert of Chile varied between <-1800 yr and -4700 yr over a period of only 1800 yr between 11,500 and 9700 bp. The corresponding reservoir correction for the marl fraction is much higher. In summary, accurate and reliable 14C dating of lake sediments requires a study of the temporal changes of the reservoir effect by analysis of both the organic and marl fractions. The most reliable 14C dates are obtained from terrestrial plant remains.


2016 ◽  
Vol 9 (2) ◽  
pp. 765-777 ◽  
Author(s):  
Bernd Heinold ◽  
Ina Tegen ◽  
Kerstin Schepanski ◽  
Jamie R. Banks

Abstract. In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.


Radiocarbon ◽  
2008 ◽  
Vol 50 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Supriyo Chakraborty ◽  
Koushik Dutta ◽  
Amalava Bhattacharyya ◽  
Mohit Nigam ◽  
Edward A G Schuur ◽  
...  

Radiocarbon analysis in annual rings of a teak tree (Tectona grandis) is reported in comparison with previously published results. Samples (disks) were collected from Hoshangabad (22°30′N, 78°E), Madhya Pradesh, in central India. The previously published sample was collected from Thane (19°12′N, 73°E), Maharashtra, near the west coast of India (Chakraborty et al. 1994). Two short Δ14C time series were reconstructed with these tree samples to capture the bomb peak of atmospheric 14C and the spatial variability in this record. These time series represent the periods 1954–1977 and 1959–1980 for Hoshangabad and Thane, respectively. The 14C peaks in these places appear around 1964–1965. The Hoshangabad tree records a peak Δ14C value of 708 ± 8%, which conforms to the peak value of Northern Hemisphere Zone 3 as described in Hua and Barbetti (2004). But the peak Δ14C at Thane is somewhat less (630 ± 8%) probably due to the dilution by fossil fuel CO2 free of 14C emanating from the neighboring industrial areas. This depletion of peak values has been used to estimate the local emission of fossil fuel CO2, which is approximately 2.3% of the background atmospheric CO2 concentration.


2018 ◽  
Vol 15 (16) ◽  
pp. 5221-5236 ◽  
Author(s):  
Thibaut Wagener ◽  
Nicolas Metzl ◽  
Mathieu Caffin ◽  
Jonathan Fin ◽  
Sandra Helias Nunige ◽  
...  

Abstract. The western tropical South Pacific was sampled along a longitudinal 4000 km transect (OUTPACE cruise, 18 February, 3 April 2015) for the measurement of carbonate parameters (total alkalinity and total inorganic carbon) between the Melanesian Archipelago (MA) and the western part of the South Pacific gyre (WGY). This paper reports this new dataset and derived properties: pH on the total scale (pHT) and the CaCO3 saturation state with respect to aragonite (Ωara). We also estimate anthropogenic carbon (CANT) distribution in the water column using the TrOCA method (Tracer combining Oxygen, inorganic Carbon and total Alkalinity). Along the OUTPACE transect a deeper penetration of CANT in the intermediate waters was observed in the MA, whereas highest CANT concentrations were detected in the subsurface waters of the WGY. By combining our OUTPACE dataset with data available in GLODAPv2 (1974–2009), temporal changes in oceanic inorganic carbon were evaluated. An increase of 1.3 to 1.6 µmol kg−1 a−1 for total inorganic carbon in the upper thermocline waters is estimated, whereas CANT increases by 1.1 to 1.2 µmol kg−1 a−1. In the MA intermediate waters (27 kg m−3 <σθ<27.2 kg m−3) an increase of 0.4 µmol kg−1 a−1 CANT is detected. Our results suggest a clear progression of ocean acidification in the western tropical South Pacific with a decrease in the oceanic pHT of up to −0.0027 a−1 and a shoaling of the saturation depth for aragonite of up to 200 m since the pre-industrial period.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 893
Author(s):  
Katsuro Hagiwara ◽  
Tamaki Matsumoto ◽  
Purevsuren Tsedendamba ◽  
Kenji Baba ◽  
Buho Hoshino

The Gobi Desert is a major source of dust events, whose frequency of occurrence and damage caused have recently significantly increased. In the present study, we investigated the types of live bacteria present in the surface soil of the Gobi Desert in Mongolia, and determined their genetic identification as well as their geographical distribution. During the survey, four different topographies (dry lake bed, wadi, well, and desert steppe) were selected, and land characteristics were monitored for moisture and temperature. The surface soil was aerobically cultured to isolate bacterial colonies, and their 16s rDNA regions were sequenced. The sequence data were identified through NCBI-BLAST analysis and generated phylogenetic trees. The results revealed two phyla and seven families of isolates from the sample points. Each isolate was characterized by their corresponding sample site. The characteristics of land use and soil surface bacteria were compared. Most of the bacteria originated from the soil, however, animal-derived bacteria were also confirmed in areas used by animals. Our findings confirmed the existence of live bacteria in the dust-generating area, suggesting that their presence could affect animal and human health. Therefore, it is necessary to further investigate dust microbes based on the One Health concept.


Sign in / Sign up

Export Citation Format

Share Document