scholarly journals Dating Organic Temper of Ceramics By Ams: Sample Preparation and Carbon Evaluation

Radiocarbon ◽  
1999 ◽  
Vol 41 (3) ◽  
pp. 315-320 ◽  
Author(s):  
Denise C Gomes ◽  
Oscar Vega

We describe a new methodology for separating organic temper from archaeological ceramics from Brazilian Amazonia. These experimental procedures were designed to directly date ceramic samples by accelerator mass spectrometry (AMS). An evaluation of the total carbon indicates the samples’ potential for dating.

Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Isabella Passariello ◽  
Fabio Marzaioli ◽  
Carmine Lubritto ◽  
Mauro Rubino ◽  
Antonio D'Onofrio ◽  
...  

A system with several lines for the preparation of graphite targets for radiocarbon analysis has been built at the new accelerator mass spectrometry (AMS) facility in Caserta, Italy. Special attention has been paid in the design to the reduction of background contamination during sample preparation. Here, we describe the main characteristics of these preparation lines. Results of tests performed to measure 14C background levels and isotope fractionation in several blank samples with the Caserta AMS system are presented and discussed.


Radiocarbon ◽  
2017 ◽  
Vol 59 (3) ◽  
pp. 713-726 ◽  
Author(s):  
J-P Dumoulin ◽  
C Comby-Zerbino ◽  
E Delqué-Količ ◽  
C Moreau ◽  
I Caffy ◽  
...  

AbstractThe main objective of this report is to present the dating process routinely applied to different types of samples at the Laboratoire de Mesure du Carbone 14 (LMC14). All the results and protocols refer to our procedures over the last 5 years. A description of the sorting and chemical pretreatments of the samples as well as the extraction and graphitization of CO2 are reported. Our last study concerning the degradation of the blank level according to the storage time of the targets between graphitization and accelerator mass spectrometry (AMS) measurement is also presented. This article also provides information on how to submit a valid laboratory sample. We give details relating to sampling procedures on site as well as contamination issues relative to the 14C dating methodology.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 275-282 ◽  
Author(s):  
Q Hua ◽  
G E Jacobsen ◽  
U Zoppi ◽  
E M Lawson ◽  
A A Williams ◽  
...  

We present routine methods of target preparation for radiocarbon analysis at the ANTARES Accelerator Mass Spectrometry (AMS) Centre, as well as recent developments which have decreased our procedural blank level and improved our ability to process small samples containing less than 200 μg of carbon. Routine methods of 14C sample preparation include sample pretreatment, CO2 extraction (combustion, hydrolysis and water stripping) and conversion to graphite (graphitization). A new method of cleaning glassware and reagents used in sample processing, by baking them under a stream of oxygen, is described. The results show significant improvements in our procedural blanks. In addition, a new graphitization system dedicated to small samples, using H2/Fe reduction of CO2, has been commissioned. The technical details of this system, the graphite yield and the level of fractionation of the targets are discussed.


Radiocarbon ◽  
2021 ◽  
pp. 1-8
Author(s):  
Daniela Bragança ◽  
Fabiana Oliveira ◽  
Kita Macario ◽  
Vinicius Nunes ◽  
Marcelo Muniz ◽  
...  

ABSTRACT Since the establishment of the first radiocarbon accelerator mass spectrometry facility in Latin America in 2009, the Radiocarbon Laboratory team of Universidade Federal Fluminense (LAC-UFF) has worked to improve sample preparation protocols and increase the range of environmental matrices to be analyzed. We now present the preliminary results for DIC sample preparation protocols. The first validation tests include background evaluation with pMC value (0.35 ± 0.04) using bicarbonate dissolved in water. We also analyzed surface seawater resulting in pMC value (101.38 ± 0.38) and a groundwater previously dated from LEMA AMS-Laboratory with pMC value (12.30 ± 0.15).


Radiocarbon ◽  
2007 ◽  
Vol 49 (3) ◽  
pp. 1395-1402 ◽  
Author(s):  
M Youn ◽  
Y M Song ◽  
J Kang ◽  
J C Kim ◽  
M K Cheoun

The accelerator mass spectrometry (AMS) facility at Seoul National University (SNU-AMS) was accepted in December 1998 and results reported first at the Vienna AMS conference in October 1999 and at the 17th Radiocarbon Conference in Israel, June 2000. At the Vienna conference, we reported our accelerator system and sample preparation systems (Kim et al. 2000). Recent developments of the AMS facility have been regularly reported at AMS conferences (Kim et al. 2001, 2004, 2007). Meanwhile, about 1000 unknown archaeological, geological, and environmental samples have been measured every year. In this report, the archaeological and geological data carried out in 2002 are presented in terms of years BP (before present, AD 1950), following the SNU-AMS date lists I and II published in Radiocarbon (Kim et al. 2006a,b).


Sign in / Sign up

Export Citation Format

Share Document