ESTABLISHING WATER SAMPLE PROTOCOLS FOR RADIOCARBON ANALYSIS AT LAC-UFF, BRAZIL

Radiocarbon ◽  
2021 ◽  
pp. 1-8
Author(s):  
Daniela Bragança ◽  
Fabiana Oliveira ◽  
Kita Macario ◽  
Vinicius Nunes ◽  
Marcelo Muniz ◽  
...  

ABSTRACT Since the establishment of the first radiocarbon accelerator mass spectrometry facility in Latin America in 2009, the Radiocarbon Laboratory team of Universidade Federal Fluminense (LAC-UFF) has worked to improve sample preparation protocols and increase the range of environmental matrices to be analyzed. We now present the preliminary results for DIC sample preparation protocols. The first validation tests include background evaluation with pMC value (0.35 ± 0.04) using bicarbonate dissolved in water. We also analyzed surface seawater resulting in pMC value (101.38 ± 0.38) and a groundwater previously dated from LEMA AMS-Laboratory with pMC value (12.30 ± 0.15).

Radiocarbon ◽  
2021 ◽  
pp. 1-19
Author(s):  
Federico Manuelli ◽  
Cristiano Vignola ◽  
Fabio Marzaioli ◽  
Isabella Passariello ◽  
Filippo Terrasi

ABSTRACT The Iron Age chronology at Arslantepe is the result of the interpretation of Luwian hieroglyphic inscriptions and archaeological data coming from the site and its surrounding region. A new round of investigations of the Iron Age levels has been conducted at the site over the last 10 years. Preliminary results allowed the combination of the archaeological sequence with the historical events that extended from the collapse of the Late Bronze Age empires to the formation and development of the new Iron Age kingdoms. The integration into this picture of a new set of radiocarbon (14C) dates is aimed at establishing a more solid local chronology. High precision 14C dating by accelerator mass spectrometry (AMS) and its correlation with archaeobotanical analysis and stratigraphic data are presented here with the purpose of improving our knowledge of the site’s history and to build a reliable absolute chronology of the Iron Age. The results show that the earliest level of the sequence dates to ca. the mid-13th century BC, implying that the site started developing a new set of relationships with the Levant already before the breakdown of the Hittite empire, entailing important historical implications for the Syro-Anatolian region at the end of the 2nd millennium BC.


Radiocarbon ◽  
2021 ◽  
pp. 1-7
Author(s):  
Corina Solís ◽  
Efraín Chávez ◽  
Arcadio Huerta ◽  
María Esther Ortiz ◽  
Alberto Alcántara ◽  
...  

ABSTRACT Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.


2011 ◽  
Author(s):  
W. E. Kieser ◽  
X.-L. Zhao ◽  
I. D. Clark ◽  
T. Kotzer ◽  
A. E. Litherland ◽  
...  

Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Isabella Passariello ◽  
Fabio Marzaioli ◽  
Carmine Lubritto ◽  
Mauro Rubino ◽  
Antonio D'Onofrio ◽  
...  

A system with several lines for the preparation of graphite targets for radiocarbon analysis has been built at the new accelerator mass spectrometry (AMS) facility in Caserta, Italy. Special attention has been paid in the design to the reduction of background contamination during sample preparation. Here, we describe the main characteristics of these preparation lines. Results of tests performed to measure 14C background levels and isotope fractionation in several blank samples with the Caserta AMS system are presented and discussed.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 163-167 ◽  
Author(s):  
J C Kim ◽  
J H Park ◽  
I C Kim ◽  
C Lee ◽  
M K Cheoun ◽  
...  

The accelerator mass spectrometry facility at the Seoul National University (SNU-AMS) was completed in December 1998 and a report was presented at the Vienna AMS conference in September 1999. At the conference, we described the basic components of our accelerator system and reported the results of the performance test. Since then, extensive testing of the accuracy and reproducibility of the system has been carried out, and about 200 unknown samples have been measured so far. We obtained a precision of 4‰ for modern samples, and an accuracy of approximately 40 yr was demonstrated by analyzing samples that were previously dated with a conventional technique and by other AMS laboratories. We present these results here, together with detailed descriptions of our data-taking and analysis procedures.


Radiocarbon ◽  
1999 ◽  
Vol 41 (3) ◽  
pp. 315-320 ◽  
Author(s):  
Denise C Gomes ◽  
Oscar Vega

We describe a new methodology for separating organic temper from archaeological ceramics from Brazilian Amazonia. These experimental procedures were designed to directly date ceramic samples by accelerator mass spectrometry (AMS). An evaluation of the total carbon indicates the samples’ potential for dating.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 663-673 ◽  
Author(s):  
Claudio Tuniz ◽  
David Fink ◽  
Michael Hotchkis ◽  
Geraldine Jacobsen ◽  
Ewan Lawson ◽  
...  

The ANTARES accelerator mass spectrometry facility at Lucas Heights Research Laboratory is operational and AMS measurements of 14C, 26Al and 36Cl are being carried out routinely. Measurement of 129I recently commenced and capabilities for other long-lived radioisotopes such as 10Be are being established. The overall aim of the facility is to develop advanced programs in Quaternary science, global climate change, biomedicine and nuclear safeguards.


Radiocarbon ◽  
2017 ◽  
Vol 59 (3) ◽  
pp. 713-726 ◽  
Author(s):  
J-P Dumoulin ◽  
C Comby-Zerbino ◽  
E Delqué-Količ ◽  
C Moreau ◽  
I Caffy ◽  
...  

AbstractThe main objective of this report is to present the dating process routinely applied to different types of samples at the Laboratoire de Mesure du Carbone 14 (LMC14). All the results and protocols refer to our procedures over the last 5 years. A description of the sorting and chemical pretreatments of the samples as well as the extraction and graphitization of CO2 are reported. Our last study concerning the degradation of the blank level according to the storage time of the targets between graphitization and accelerator mass spectrometry (AMS) measurement is also presented. This article also provides information on how to submit a valid laboratory sample. We give details relating to sampling procedures on site as well as contamination issues relative to the 14C dating methodology.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5743
Author(s):  
Mark S. Popov ◽  
Nikolay V. Ul’yanovskii ◽  
Dmitry S. Kosyakov

The use of highly toxic rocket fuel based on 1,1-dimethylhydrazine (UDMH) in many types of carrier rockets poses a threat to environment and human health associated with an ingress of UDMH into wastewater and natural reservoirs and its transformation with the formation of numerous toxic nitrogen-containing products. Their GC-MS quantification in aqueous samples requires matrix change and is challenging due to high polarity of analytes. To overcome this problem, accelerated water sample preparation (AWASP) based on the complete removal of water with anhydrous sodium sulfate and transferring analytes into dichloromethane was used. Twenty-nine UDMH transformation products including both the acyclic and heterocyclic compounds of various classes were chosen as target analytes. AWASP ensured attaining near quantitative extraction of 23 compounds with sample preparation procedure duration of no more than 5 min. Combination of AWASP with gas chromatography–mass spectrometry and using pyridine-d5 as an internal standard allowed for developing the rapid, simple, and low-cost method for simultaneous quantification of UDMH transformation products with detection limits of 1–5 μg L−1 and linear concentration range covering 4 orders of magnitude. The method has been validated and successfully tested in the analysis of aqueous solutions of rocket fuel subjected to oxidation with atmospheric oxygen, as well as pyrolytic gasification in supercritical water modelling wastewater from carrier rockets launch sites.


Sign in / Sign up

Export Citation Format

Share Document