scholarly journals Large-scale galactic shock phenomena and the implications on star formation

1970 ◽  
Vol 38 ◽  
pp. 415-422
Author(s):  
W. W. Roberts

The possible existence of a stationary two-armed spiral shock pattern for a disk-shaped galaxy, such as our own Milky Way System, is demonstrated. It is therefore suggested that large-scale galactic shock phenomena may very well form the large-scale triggering mechanism for the gravitational collapse of gas clouds, leading to star formation along narrow spiral arcs within a two-armed grand design of spiral structure.

1983 ◽  
Vol 100 ◽  
pp. 141-142 ◽  
Author(s):  
J. V. Feitzinger ◽  
P. E. Seiden

Spiral structure in galaxies can arise from both dynamic and non dynamic phenomena: spiral density waves and stochastic selfpropagating star formation. The relative importance of these effects is still not known. Deficiences of the original selfpropagating star formation model (where only stars are taken into account) are overcome by explicitly considering the stars embedded in and interacting with a two-component gas (Seiden and Gerola, 1979; Seiden, Schulman and Feitzinger, 1982; Seiden and Gerola, 1982). The two-component gas is essential because it is the means by which we get feedback in the interaction between stars and gas. The coupling between stars and gas regulates and stabilizes star formation in a galaxy. Under proper conditions this model can give good grand design spirals (Fig. 1).


1983 ◽  
Vol 100 ◽  
pp. 159-160 ◽  
Author(s):  
R. Beck

Interstellar magnetic fields are known to be a constraint for star formation, but their influence on the formation of spiral structures and the evolution of galaxies is generally neglected. Structure, strength and degree of uniformity of interstellar magnetic fields can be determined by measuring the linearly polarised radio continuum emission at several frequencies (e.g. Beck, 1982). Results for 7 galaxies observed until now with the Effelsberg and Westerbork radio telescopes are given in the table. The Milky Way is also included for comparison.


2004 ◽  
Vol 21 (4) ◽  
pp. 379-381
Author(s):  
Matthew Coleman

AbstractRecent years have seen a series of large-scale photometric surveys with the aim of detecting substructure in nearby dwarf galaxies. Some of these objects display a varying distribution of each stellar population, reflecting their star formation histories. Also, dwarf galaxies are dominated by dark matter, therefore luminous substructure may represent a perturbation in the underlying dark material. Substructure can also be the effect of tidal interaction, such as the disruption of the Sagittarius dSph by the Milky Way. Therefore, substructure in dwarf galaxies manifests the stellar, structural, and kinematic evolution of these objects.


2020 ◽  
Vol 497 (2) ◽  
pp. 2442-2454 ◽  
Author(s):  
Yusuke Fujimoto ◽  
Mark R Krumholz ◽  
Shu-ichiro Inutsuka

ABSTRACT 26Al is a short-lived radioactive isotope thought to be injected into the interstellar medium (ISM) by massive stellar winds and supernovae (SNe). However, all-sky maps of 26Al emission show a distribution with a much larger scale height and faster rotation speed than either massive stars or the cold ISM. We investigate the origin of this discrepancy using an N-body + hydrodynamics simulation of a Milky-Way-like galaxy, self-consistently including self-gravity, star formation, stellar feedback, and 26Al production. We find no evidence that the Milky Way’s spiral structure explains the 26Al anomaly. Stars and the 26Al bubbles they produce form along spiral arms, but, because our simulation produces material arms that arise spontaneously rather than propagating arms forced by an external potential, star formation occurs at arm centres rather than leading edges. As a result, we find a scale height and rotation speed for 26Al similar to that of the cold ISM. However, we also show that a synthetic 26Al emission map produced for a possible Solar position at the edge of a large 26Al bubble recovers many of the major qualitative features of the observed 26Al sky. This suggests that the observed anomalous 26Al distribution is the product of foreground emission from the 26Al produced by a nearby, recent SN.


2018 ◽  
Vol 14 (S345) ◽  
pp. 61-65
Author(s):  
J. M. Diederik Kruijssen ◽  
Steven N. Longmore

AbstractStar formation is spatially clustered across a range of environments, from dense stellar clusters to unbound associations. As a result, radiative or dynamical interactions with neighbouring stars disrupt (proto)planetary systems and limit their radii, leaving a lasting impact on their potential habitability. In the solar neighbourhood, we find that the vast majority of stars form in unbound associations, such that the interaction of (proto)planetary systems with neighbouring stars is limited to the densest sub-regions. However, the fraction of star formation occurring in compact clusters was considerably higher in the past, peaking at ∼50% in the young Milky Way at redshift z ∼ 2. These results demonstrate that the large-scale star formation environment affects the demographics of planetary systems and the occupation of the habitable zone. We show that planet formation is governed by multi-scale physics, in which Mpc-scale events such as galaxy mergers affect the AU-scale properties of (proto)planetary systems.


2012 ◽  
Vol 8 (S294) ◽  
pp. 213-224 ◽  
Author(s):  
JinLin Han

AbstractMagnetic fields in our Galaxy and nearby galaxies have been revealed by starlight polarization, polarized emission from dust grains and clouds at millimeter and submillimeter wavelength, the Zeeman effect of spectral lines or maser lines from clouds or clumps, diffuse radio synchrotron emission from relativistic electrons in interstellar magnetic fields, and the Faraday rotation of background radio sources as well as pulsars for our Milky Way. It is easy to get a global structure for magnetic fields in nearby galaxies, while we have observed many details of magnetic fields in our Milky Way, especially by using pulsar rotation measure data. In general, magnetic fields in spiral galaxies probably have a large-scale structure. The fields follow the spiral arms with or without the field direction reversals. In the halo of spiral galaxies magnetic fields exist and probably also have a large-scale structure as toroidal and poloidal fields, but seem to be slightly weaker than those in the disk. In the central region of some galaxies, poloidal fields have been detected as vertical components. Magnetic field directions in galaxies seem to have been preserved during cloud formation and star formation, from large-scale diffuse interstellar medium to molecular clouds and then to the cloud cores in star formation regions or clumps for the maser spots. Magnetic fields in galaxies are passive to dynamics.


1985 ◽  
Vol 106 ◽  
pp. 559-560
Author(s):  
J. V. Feitzinger

Galaxies are dissipative systems, and the spatial and time structure of the interstellar medium and young stars is governed by reaction-diffusion equations. The coherent galactic oscillations of star formation self-organized in spiral waves, previously detected by numerical simulations (Seiden, Schulman, Feitzinger, 1982) can be analytically described by the concept of a limit cycle. Analytical work on self-propagating stochastic star formation is also done by Kaufman (1979), Shore (1981, 1982) and Cowie and Rybicki (1982).


2020 ◽  
Vol 494 (1) ◽  
pp. 624-641 ◽  
Author(s):  
Mark R Krumholz ◽  
Christopher F McKee

ABSTRACT Gravitationally bound clusters that survive gas removal represent an unusual mode of star formation in the Milky Way and similar spiral galaxies. While forming, they can be distinguished observationally from unbound star formation by their high densities, virialized velocity structures, and star formation histories that accelerate towards the present, but extend multiple free-fall times into the past. In this paper, we examine several proposed scenarios for how such structures might form and evolve, and carry out a Bayesian analysis to test these models against observed distributions of protostellar age, counts of young stellar objects relative to gas, and the overall star formation rate of the Milky Way. We show that models in which the acceleration of star formation is due either to a large-scale collapse or a time-dependent increase in star formation efficiency are unable to satisfy the combined set of observational constraints. In contrast, models in which clusters form in a ‘conveyor belt’ mode where gas accretion and star formation occur simultaneously, but the star formation rate per free-fall time is low, can match the observations.


1985 ◽  
Vol 106 ◽  
pp. 301-302 ◽  
Author(s):  
Bruce G. Elmegreen

A variety of observations suggest that clouds of 106-107 M⊙ and extended regions of star formation are the best tracers of spiral structure in the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document