scholarly journals The correlation of solar radio bursts by magnetic activity and cosmic rays

1959 ◽  
Vol 9 ◽  
pp. 210-213
Author(s):  
A. R. Thompson

The sweep-frequency equipment at the Harvard Radio Astronomy Station, Fort Davis, Texas, has now been running continuously since 1956 September, recording solar radio activity in the frequency range from 100 to 580 Mc/s. The following contribution describes preliminary investigations of the correlation of the radio data with solar corpuscular emissions. This work was initiated to examine the well-known suggestions that the origins of the type II and type III radio bursts are associated with the ejection of auroral particles and cosmic rays respectively.

1963 ◽  
Vol 16 (2) ◽  
pp. 240 ◽  
Author(s):  
AA Weiss

The east-west position coordinates of the sources of 22 type II radio bursts, measured in the range 40-70 Mc/s using a swept-frequency interferometer, are analysed and discussed, in conjunction with dynamic spectra obtained in the frequency range 15-210 Mc/s. Many bursts are multiple and consist of a number of separate bursts excited by disturbances ejected in different directions from the vicinity of an optical flare, which may be equally complex.


1994 ◽  
Vol 144 ◽  
pp. 283-284
Author(s):  
G. Maris ◽  
E. Tifrea

The type II solar radio bursts produced by a shock wave passing through the solar corona are one of the most frequently studied solar activity phenomena. The scientific interest in this type of phenomenon is due to the fact that the presence of this radio event in a solar flare is an almost certain indicator of a future geophysical effect. The origin of the shock waves which produce these bursts is not at all simple; besides the shocks which are generated as a result of a strong energy release during the impulsive phase of a flare, there are also the shocks generated by a coronal mass ejection or the shocks which appear in the interplanetary space due to the supplementary acceleration of the solar particles.


1990 ◽  
pp. 517-518
Author(s):  
V. V. Fomichev ◽  
I. M. Chertok ◽  
R. V. Gorgutsa ◽  
A. K. Markeev ◽  
B. Kliem ◽  
...  

2002 ◽  
Vol 199 ◽  
pp. 488-489
Author(s):  
D. L. Jones

The GMRT represents a dramatic improvement in ground-based observing capabilities for low frequency radio astronomy. At sufficiently low frequencies, however, no ground-based facility will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium.


1989 ◽  
Vol 104 (2) ◽  
pp. 185-189
Author(s):  
N. Copalswamy ◽  
M. R. Kundu

AbstractWe present recent results from meter-decameter imaging of several classes of solar radio bursts: Preflare activity in the form of type III bursts, correlated type IIIs from distant sources, and type II and moving type IV bursts associated with flares and CMEs.


1965 ◽  
Vol 18 (2) ◽  
pp. 143 ◽  
Author(s):  
The Late AA Weiss ◽  
RT Stewart

The properties of the metre-wave type V burst have been-observed by interferometry in the frequency range 40-70 Mc/s, and by dynamic spectroscopy in the frequency range 5-210 Mc/s. Our investigations cover positions, movements, and angular sizes of the sources, and the spectrum and polarization of the emission.


1961 ◽  
Vol 133 ◽  
pp. 243 ◽  
Author(s):  
C. W. Young ◽  
C. L. Spencer ◽  
G. E. Moreton ◽  
J. A. Roberts

2012 ◽  
Vol 117 (A6) ◽  
pp. n/a-n/a ◽  
Author(s):  
D. S. Hillan ◽  
Iver H. Cairns ◽  
P. A. Robinson

1974 ◽  
Vol 2 (5) ◽  
pp. 255-258 ◽  
Author(s):  
R. A. Duncan

Large solar radio outbursts at metre wavelengths often consist of a group of type III bursts followed a few minutes later by a type II burst; in both spectral types the intense burst radiation drifts towards lower frequencies with time (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document