scholarly journals Infrared Speckle Interferometry: A Sensitive Technique for Physical Measurements of Unseen Companions to Nearby Stars

1986 ◽  
Vol 109 ◽  
pp. 309-319
Author(s):  
D. W. McCarthy

Infrared speckle interferometry combines the full resolving power of large telescopes with high photometric sensitivity over the wavelength range 2.2 to 12 microns. Despite improved atmospheric seeing at these wavelengths, seeing fluctuations limit measurement precision. Astrometric companions have been detected with angular separations ≥0.1 arcsec and magnitude differences ≤3.7 mag. Results illustrate seeing limitations and show how the usual position angle ambiguity can be overcome. These measurements yield masses and absolute magnitudes for calibrating the lower main sequence. In some cases, orbital motion is detected. A method of “shift-and-add” enables detection of substellar (0.04 to 0.08 M⊙) companions. Future improvements involving detector arrays and seeing monitors are discussed.

1983 ◽  
Vol 71 ◽  
pp. 505-507 ◽  
Author(s):  
Theodore Simon ◽  
P.R. Schwartz ◽  
H.M. Dyck ◽  
B. Zuckerman

We have recently reported the discovery of a cool (650–800 K) low-luminosity companion to the pre-main-sequence star, T Tauri (Dyck et al. 1982). We proposed that the optical star and its infrared companion form a physical pair with a N-S separation of 100 a.u. However, there remained in our 2-5 μm speckle interferometry an ambiguity of 180° in the position angle of the secondary. In addition, Cohen et al. (1982) noted an 800 milliarcsec (mas) offset between the visual and 6 cm radio positions at T Tau. Both of these positional discrepancies have now been clarified by accurate visual and radio astrometry of T Tau, and by further near-IR speckle interferometry.


2018 ◽  
Vol 613 ◽  
pp. A26 ◽  
Author(s):  
R.-D. Scholz ◽  
H. Meusinger ◽  
H. Jahreiß

Aims. Using an accurate Tycho-Gaia Astrometric Solution (TGAS) 25 pc sample that is nearly complete for GK stars and selecting common proper motion (CPM) candidates from the 5th United States Naval Observatory CCD Astrograph Catalog (UCAC5), we search for new white dwarf (WD) companions around nearby stars with relatively small proper motions. Methods. To investigate known CPM systems in TGAS and to select CPM candidates in TGAS+UCAC5, we took into account the expected effect of orbital motion on the proper motion and proper motion catalogue errors. Colour-magnitude diagrams (CMDs) MJ ∕J − Ks and MG ∕G − J were used to verify CPM candidates from UCAC5. Assuming their common distance with a given TGAS star, we searched for candidates that occupied similar regions in the CMDs as the few known nearby WDs (four in TGAS) and WD companions (three in TGAS+UCAC5). The CPM candidates with colours and absolute magnitudes corresponding neither to the main sequence nor to the WD sequence were considered as doubtful or subdwarf candidates. Results. With a minimum proper motion of 60 mas yr−1, we selected three WD companion candidates; two of which are also confirmed by their significant parallaxes measured in URAT data, whereas the third may also be a chance alignment of a distant halo star with a nearby TGAS star that has an angular separation of about 465 arcsec. One additional nearby WD candidate was found from its URAT parallax and GJKs photometry. With HD 166435 B orbiting a well-known G1 star at ≈24.6 pc with a projected physical separation of ≈700 AU, we discovered one of the hottest WDs, classified by us as DA2.0 ± 0.2, in the solar neighbourhood. We also found TYC 3980-1081-1 B, a strong cool WD companion candidate around a recently identified new solar neighbour with a TGAS parallax corresponding to a distance of ≈8.3 pc and our photometric classification as ≈M2 dwarf. This raises the question of whether previous assumptions on the completeness of the WD sample to a distance of 13 pc were correct.


1998 ◽  
Vol 11 (1) ◽  
pp. 566-566
Author(s):  
C. Jaschek ◽  
A.E. Gómez

We have analysed the standards of the MK system in the B0-F5 spectral region with the help of Hipparcos parallaxes, using only stars for which the error on the absolute magnitude is ≤ 0.3 mag. The sample stars (about one hundred) were scrutinized for companions and for interstellar extinction. We find that the main sequence is a wide band and that, although in general giants and dwarfs have different absolute magnitudes, the separation between luminosity class V and III is not clear. We conclude that there is no strict relation between luminosity class and absolute magnitude. The relation is only a statistical one and has a large intrinsic dispersion. We have analysed similarly the system of standards defined by Garrison and Gray (1994) separating low and high rotational velocity standards. We find similar effects as in the original MK system.


1998 ◽  
Vol 11 (1) ◽  
pp. 567-567
Author(s):  
E. Antonello ◽  
L. Mantegazza ◽  
E. Poretti

The absolute magnitudes of δ Scuti stars derived from parallaxes measured by the Hipparcos satellite were compared with the previous estimates based on photometric uvby² indices, and significant differences were found which are related to photometric effects of metallicity and rotational velocity. A reliable calibration of Mv in terms of the photometric indices shall include an estimate of these effects. It is important also to take into account the possible presence of unresolved close companions in order to fully exploit the accuracy of Mv of nearby stars derived from the trigonometric parallaxes. The Mv of few bright SX Phe stars support the period-luminosity relation obtained with ground based observations of globular clusters, while it does not seem to confirm the empirical dependence of this relation on the metallicity. Some high amplitude δ Scuti stars with intermediate or normal metallicity and small and uncertain parallax have apparently a very low luminosity. Simulations of Mv determinations from observed parallaxes based on the discussion of observational errors by Lutz and Kelker (1973) have shown that the low luminosity could be an effect related to these errors.


1995 ◽  
Vol 10 ◽  
pp. 399-402
Author(s):  
A.E. Gómez ◽  
C. Turon

The Hertzprung-Russel (HR) diagram luminosity calibration relies basically on three kinds of data: trigonometric parallaxes, kinematical data (proper motions and radial velocities) and cluster distances obtained by the zero-age main sequence fitting procedure. The most fundamental method to calculate the absolute magnitude is the use of trigonometric parallaxes, but up to now, accurate data only exist for stars contained in a small volume around the sun. Individual absolute magnitudes are obtained using trigonometric parallaxes or photometric and spectroscopic calibrations. In these calibrations the accuracy on the absolute magnitude determination ranges from ±0.m2 in the main sequence to ±0m5 in the giant branch. On the other hand, trigonometric parallaxes, kinematical data or cluster distances have been used to make statistical calibrations of the absolute magnitude. The standard error on the mean absolute magnitude calibrations ranges from ±0m3 to ±0m6 on the mean sequence, from ±0m5 to ±0m7 on thegiant branch and is of about 1mfor supergiants.Future improvements in the absolute magnitude determination will depend on the improvement of the basic data from the ground and space. A brief overview of the new available data is presented. In particular, the analysis of the first 30 months data of the Hipparcos mission (H30) (from the 37 months data of the whole mission) allows to perform a statistical evaluation of the improvements expected in the luminosity determination.


1959 ◽  
Vol 10 ◽  
pp. 39-40
Author(s):  
O. C. Wilson

Modern photoelectric techniques yield magnitudes and colors of stars with accuracies of the order of a few thousandths and a few hundredths of a magnitude respectively. Hence for star clusters it is possible to derive highly accurate color-magnitude arrays since all of the members of a cluster may be considered to be at the same distance from the observer. It is much more difficult to do this for the nearby stars where all of the objects concerned are at different, and often poorly determined, distances. If one depends upon trigonometric parallaxes, the bulk of the reliable individual values will refer to main sequence stars, and while the mean luminosities of brighter stars are given reasonably well by this method, the scatter introduced into a color-magnitude array by using individual trigonometrically determined luminosities could obscure important features. Somewhat similar objections could be raised against the use of the usual spectroscopic parallaxes which also should be quite good for the main sequence but undoubtedly exhibit appreciable scatter for some, at least, of the brighter stars.


1985 ◽  
Vol 111 ◽  
pp. 369-372
Author(s):  
W. Gliese ◽  
H. Jahreiss

The nearby stars are most favored for determining precise absolute magnitudes and for calibrating spectral-type, luminosity relations and color, luminosity relations. To demonstrate the main problems we discuss the (Mv,B-V) relation since (B-V) data are available for most of our candidates. At Yale Observatory van Altena is compiling a new catalog of trigonometric parallaxes. We feel deeply indebted to van Altena for making available to us a preliminary version of this catalog.


1995 ◽  
Vol 166 ◽  
pp. 392-392
Author(s):  
E. Horch ◽  
W. F. Van Altena ◽  
T. M. Girard ◽  
C. E. López ◽  
O. Franz

We have started a new program of double star observations in the southern hemisphere which utilizes the technique of speckle interferometry. Observations are made using the Stanford University speckle interferometer on the 76-cm reflector at the Cesco Observatory at El Leoncito, Argentina (jointly run by Universidad Nacional de San Juan and Yale Southern Observatory), although we will also have access to larger aperture telescopes. The Stanford system, formerly used at Lick Observatory, is on long term loan to us from Dr. Gethyn Timothy and features a multi-anode microchannel array (MAMA) detector as the imaging device. This new program of double star research will help alleviate the continuing problem of fewer speckle observations in the southern hemisphere. In combination with other data such as the eyepiece interferometer measures of Finsen and Hipparcos parallaxes, it should also eventually contribute to a better understanding of the lower portion of the main sequence mass-luminosity relation.


1973 ◽  
Vol 50 ◽  
pp. 52-59
Author(s):  
W. Gliese

By examining the observed dispersion in (colour, spectral type) relations, classification errors have been derived from the data of nearby stars. The comparisons of the colour deviations observed in spectral regions of large variations of colour with type with the deviations in regions of small variations give the following standard errors in units of a tenth of a spectral class: For K dwarfs ±0.6 (MK), ±1.2 (Mt. Wilson), ±0.7 (Kuiper); for early M dwarfs ±0.9: (MK), ±0.7 (Mt. Wilson), ±0.5: (Kuiper); and for late M dwarfs ±0.7 (Kuiper).


Sign in / Sign up

Export Citation Format

Share Document