optical star
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Anatol Cherepashchuk

SS433 is the first example of a microquasar discovered in the Galaxy. It is a natural laboratory for studies of extraordinarily interesting physical processes that are very important for the relativistic astrophysics, cosmic gas dynamics and theory of evolution of stars. The object has been studied for over 40 years in the optical, X-ray and radio bands. By now, it is generally accepted that SS433 is a massive eclipsing X-ray binary in an advanced stage of evolution in the supercritical regime of accretion on the relativistic object. Intensive spectral and photometric observations of SS433 at the Caucasian Mountain Observatory of the P. K. Sternberg Astronomical Institute of M. V. Lomonosov Moscow State University made it possible to find the ellipticity of the SS433 orbit and to discover an increase in the system’s orbital period. These results shed light on a number of unresolved issues related to SS433. In particular, a refined estimate of the mass ratio MxMv>0.8 was obtained (Mx and Mv are the masses of the relativistic object and optical star). Based on these estimates, the relativistic object in the SS433 system is the black hole; its mass is >8M⊙. The ellipticity of the orbit is consistent with the “slaved” accretion disc model. The results obtained made it possible to understand why SS433 evolves as the semi-detached binary instead of the common envelope system.


2021 ◽  
Vol 648 ◽  
pp. A39
Author(s):  
N. I. Shakura ◽  
D. A. Kolesnikov ◽  
P. S. Medvedev ◽  
R. A. Sunyaev ◽  
M. R. Gilfanov ◽  
...  

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) instrument onboard the Russian-German ‘Spectrum-Roentgen-Gamma’ (SRG) mission observed the Her X-1/HZ Her binary system in multiple scans over the source during the first and second SRG all-sky surveys. Both observations occurred during a low state of the X-ray source when the outer parts of the accretion disk blocked the neutron star from view. The orbital modulation of the X-ray flux was detected during the low states. We argue that the detected X-ray radiation results from scattering of the emission of the central source by three distinct regions: (a) an optically thin hot corona with temperature ~(2−4) × 106 K above the irradiated hemisphere of the optical star; (b) an optically thin hot halo above the accretion disk; and (c) the optically thick cold atmosphere of the optical star. The latter region effectively scatters photons with energies above 5–6 keV.


2019 ◽  
Vol 490 (3) ◽  
pp. 3601-3607 ◽  
Author(s):  
S V Bogovalov ◽  
D Khangulyan ◽  
A Koldoba ◽  
G V Ustyugova ◽  
F Aharonian

ABSTRACT We present a numerical study of the properties of the flow produced by the collision of a magnetized anisotropic pulsar wind with the circumbinary environment. We focus on studying the impact of the high wind magnetization on the geometrical structure of the shocked flow. This work is an extension of our earlier studies that focused on a purely hydrodynamic interaction and weak wind magnetization. We consider the collision in the axisymmetric approximation, i.e. the pulsar rotation axis is assumed to be oriented along the line between the pulsar and the optical star. The increase of the magnetization results in the expansion of the opening cone in which the shocked pulsar wind propagates. This effect is explained in the frameworks of the conventional theory of collimation of magnetized winds. This finding has a direct implication for scenarios that involve Doppler boosting as the primary mechanism behind the GeV flares detected with the Fermi Large Area Telescope from PSR B1259−63/LS 2883. The maximum enhancement of the apparent emission is determined by the ratio of 4$\pi$ to the solid in which the shocked pulsar wind propagates. Our simulations suggest that this enhancement factor is decreased by the impact of the magnetic field.


2018 ◽  
Vol 14 (S346) ◽  
pp. 281-287
Author(s):  
N. Shakura ◽  
D. Kolesnikov ◽  
K. Postnov ◽  
I. Volkov ◽  
I. Bikmaev ◽  
...  

AbstractThe X-ray binary Her X-1 consists of an accreting neutron star and the optical companion HZ Her. The 35-day X-ray variability of this system is known since its discovery in 1972 by the UHURU satellite and is believed to be caused by forced precession of the warped accretion disk tilted to the orbital plane. We argue that the observed features of the optical variability of HZ Her can be explained by free precession of the neutron star with a period close to that of the forced disk precession. The model parameters include a) the intensity (power) of the stream of matter flowing out of the optical star; b) the X-ray luminosity of the neutron star; c) the optical flux of the accretion disk; d) the X-ray irradiation pattern on the donor star; e) the tilt of the inner and outer edge of the accretion disk. A possible synchronization mechanism based on the coupling between the neutron star free precession and the dynamical action of non-stationary gas streams is discussed shortly.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Sridhar Iyer ◽  
Ambily Joy

AbstractIn this article, for an optical star wavelength division multiplexing (WDM) network, with quality factor (


2013 ◽  
Vol 54 ◽  
pp. 15-21 ◽  
Author(s):  
S. Jeeva Sathya Theesar ◽  
M.R.K. Ariffin ◽  
Santo Banerjee

Sign in / Sign up

Export Citation Format

Share Document