scholarly journals The Location, Spectrum and Beamwidth of Pulsar Radiation from Polar Cap Models

1981 ◽  
Vol 95 ◽  
pp. 107-109
Author(s):  
B. J. Rickett ◽  
J. M. Cordes

In the rotating “lighthouse” interpretation of pulsars, the average radio pulse profile is generally assumed to be a section through the average beam shape radiated by a spinning neutron star. The radio emission received in any one particular period usually differs markedly from the average profile. Such variations have been classified as subpulses (~ 3 ms) and micropulses (~ .3 ms); see Cordes (1979) for examples. However, there is not general agreement as to whether these variations are caused by the rotation of a steady narrow beam or by temporal variations of a wider beam. We first discuss these questions independently of the emitting particle location, and then apply them to a particular model.

2019 ◽  
Vol 491 (1) ◽  
pp. 80-91 ◽  
Author(s):  
J Pétri ◽  
D Mitra

ABSTRACT Multiwavelength observations of pulsar emission properties are powerful means to constrain their magnetospheric activity and magnetic topology. Usually a star centred magnetic dipole model is invoked to explain the main characteristics of this radiation. However, in some particular pulsars where observational constraints exist, such simplified models are unable to predict salient features of their multiwavelength emission. This paper aims to carefully model the radio and X-ray emission of PSR J1136+1551 with an off-centred magnetic dipole to reconcile both wavelength measurements. We simultaneously fit the radio pulse profile with its polarization and the thermal X-ray emission from the polar cap hotspots of PSR J1136+1551. We are able to pin down the parameters of the non-dipolar geometry (which we have assumed to be an offset dipole) and the viewing angle, meanwhile accounting for the time lag between X-ray and radio emission. Our model fits the data if the off-centred magnetic dipole lies about 20 per cent below the neutron star surface. We also expect very asymmetric polar cap shapes and sizes, implying non-antipodal and non-identical thermal emission from the hotspots. We conclude that a non-dipolar surface magnetic field is an essential feature to explain the multiwavelength aspects of PSR J1136+1551 and other similar pulsars.


2020 ◽  
Vol 493 (4) ◽  
pp. 5680-5692
Author(s):  
L Ji ◽  
L Ducci ◽  
A Santangelo ◽  
S Zhang ◽  
V Suleimanov ◽  
...  

ABSTRACT We report on our analysis of the 2019 outburst of the X-ray accreting pulsar 4U 1901+03 observed with Insight-HXMT and NICER. Both spectra and pulse profiles evolve significantly in the decaying phase of the outburst. Dozens of flares are observed throughout the outburst. They are more frequent and brighter at the outburst peak. We find that the flares, which have a duration from tens to hundreds of seconds, are generally brighter than the persistent emission by a factor of ∼1.5. The pulse-profile shape during the flares can be significantly different from that of the persistent emission. In particular, a phase shift is clearly observed in many cases. We interpret these findings as direct evidence of changes of the pulsed beam pattern, due to transitions between the sub- and supercritical accretion regimes on a short time-scale. We also observe that at comparable luminosities the flares’ pulse profiles are rather similar to those of the persistent emission. This indicates that the accretion on the polar cap of the neutron star is mainly determined by the luminosity, i.e. the mass accretion rate.


1977 ◽  
Vol 43 ◽  
pp. 34-34
Author(s):  
W. Pietsch ◽  
C. Reppin ◽  
R. Staubert ◽  
J. Truemper ◽  
W. Voges ◽  
...  

A four hour balloon observation of HERC X-l during the 'On-state' in the 35 day cycle was performed on May 3rd, 1976. The 1.24 second pulsations show a pulsed fraction of 58 ± 8% in the 18-31 KeV interval. A pulsed flux (1.24 sec) was discovered in the 31-88 KeV interval with a pulsed fraction of 51 ± 14%. The spectrum of the pulsed flux can be represented up to 50 KeV by an exponential distribution with KT approximately 8 KeV. At approximately 58 KeV a strong and narrow line feature occurs which we interpret as electron cyclotron emission (ΔN = 1 Landau transition) from the polar cap plasma of the rotating neutron star. The corresponding magnetic field strength is approximately 5 x 1012 Gauss, neglecting gravitational red shift. There is evidence for a second harmonic at approximately 110 KeV (ΔN = 2 ).The astrophysical application of this discovery will be discussed in some detail.


2007 ◽  
Vol 25 (8) ◽  
pp. 1865-1876 ◽  
Author(s):  
A. D. DeJong ◽  
X. Cai ◽  
R. C. Clauer ◽  
J. F. Spann

Abstract. Using Polar UVI LBHl and IMAGE FUV WIC data, we have compared the auroral signatures and polar cap open flux for isolated substorms, sawteeth oscillations, and steady magnetospheric convection (SMC) events. First, a case study of each event type is performed, comparing auroral signatures and open magnetic fluxes to one another. The latitude location of the auroral oval is similar during isolated substorms and SMC events. The auroral intensity during SMC events is similar to that observed during the expansion phase of an isolated substorm. Examination of an individual sawtooth shows that the auroral intensity is much greater than the SMC or isolated substorm events and the auroral oval is displaced equatorward making a larger polar cap. The temporal variations observed during the individual sawtooth are similar to that observed during the isolated substorm, and while the change in polar cap flux measured during the sawtooth is larger, the percent change in flux is similar to that measured during the isolated substorm. These results are confirmed by a statistical analysis of events within these three classes. The results show that the auroral oval measured during individual sawteeth contains a polar cap with, on average, 150% more magnetic flux than the oval measured during isolated substorms or during SMC events. However, both isolated substorms and sawteeth show a 30% decrease in polar cap magnetic flux during the dipolarization (expansion) phase.


1996 ◽  
Vol 158 ◽  
pp. 371-374
Author(s):  
R. E. Spencer

Some of the most astrophysically interesting objects are found among the radio-emitting X-ray binary stars (REXRB). The class includes the well-studied objects such as SS 433, Cyg X-3 and Sco X-1. The recent discoveries of relativistic ejection of radio knots in the X-ray transients 1915+105 (Mirabel & Rodriguez 1994) and 1655–40 (Hjellming & Rupen 1995) well illustrate the extreme nature of some of these objects.X-ray binaries are semi-detached binary stars in which matter is transfered from a more or less normal star onto a neutron star or black hole. X-ray satellites have detected large numbers of these objects (193 in a recent catalogue by van Paradijs 1995). However only a small fraction of these are known to have radio emission (e.g. Hjellming 1988).


2019 ◽  
Vol 28 (10) ◽  
pp. 1950128 ◽  
Author(s):  
Javlon Rayimbaev ◽  
Bobur Turimov ◽  
Bobomurat Ahmedov

Results of our previous paper [B. V. Turimov, B. J. Ahmedov and A. A. Hakimov, Phys. Rev. D 96 (2017) 104001] show that the effects of brane charges are not negligible in the magnetic field of the magnetized neutron star, in particular at the surface of the star, and increasing the value of brane tidal charges causes an increases in the value of surface magnetic field of magnetized neutron star, that is why it is important to consider the effects of braneworlds on energetic processes in the plasma magnetosphere of the neutron star. In this paper, we have obtained the analytical expression for Goldreich–Julian (GJ) charge density in braneworlds for inclined neutron star by solving Maxwell’s equations and found that the value of GJ charge density decreases in braneworlds. The analytical expression for scalar potential in the polar cap region of the neutron star has also been obtained. It is shown that the values of the parallel accelerating electrical fields increase with the increase of the value of the tidal charge near the surface of the neutron star. The influence of braneworlds on pair production condition on the surface of the neutron star and magnetospheric energy losses due to electromagnetic radiations have also been studied. We have shown how radiation beam becomes narrow due to the effects of braneworlds by studying the particle’s trajectory in the polar cap region in the [Formula: see text]–[Formula: see text] ([Formula: see text].) plane. Numerical calculations for particle motion in the polar cap region show that accelerating distance of charged particle increases up to its maximum value in braneworld in comparison with that in GR, due to additional gravitating behavior of tidal charges.


Author(s):  
P B Jones

Abstract A number of previous papers have developed an ion-proton theory of the pulsar polar cap. The basic equations summarizing this are given here with the results of sets of model step-to-step calculations of pulse-precursor profiles. The nature of step-to-step profile variations is described by calculated phase-resolved modulation indices. The conditions under which nulls are present in step sequences are analysed. The change of mean null length with neutron-star surface temperature shows a pathway ending in emission similar to the Rotating Radio Transients. The model accommodates exceptional pulsars, the millisecond pulsars (in principle), and the 8.5 s period PSR J2144-3933. These are considered separately and their emission mechanism discussed in some detail.


2004 ◽  
Vol 218 ◽  
pp. 203-206
Author(s):  
Ilana Harrus ◽  
Joseph P. Bernstein ◽  
Patrick O. Slane ◽  
Bryan Gaensler ◽  
John P. Hughes ◽  
...  

We present results from our analysis of Chandra data on the supernova remnant MSH 11–62 (also known as G291.0−0.1). Our previous ASCA analysis showed that MSH 11–62 is most likely a composite remnant whose strong non-thermal emission is powered by a compact object, most probably a pulsar. The present analysis confirms in a spectacular fashion the earlier detection of a compact source. The Chandra data reveal a small region with a hard non-thermal spectrum located at the tip of the central radio emission seen in data taken at the Australia Telescope Compact Array (ATCA). This source is likely the young rapidly rotating neutron star powering the synchrotron nebula in MSH 11–62. Compared to other young rotation-powered pulsars the Chandra specrum of MSH 11–62 implies an energy loss rate of Ė ∼ 5 × 1036 ergs s−1.


Nature ◽  
1960 ◽  
Vol 186 (4725) ◽  
pp. 610-613 ◽  
Author(s):  
M. R. KUNDU ◽  
F. T. HADDOCK

Sign in / Sign up

Export Citation Format

Share Document