solar radio emission
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 23)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 34 ◽  
pp. 76-80
Author(s):  
E. A. Isaeva

The relationship between SCR and CME and with fading of the continuum of noise storms and typeIV radio bursts in the decameter range is investigated. It was shown earlier that about 60% of CMEs associated with solar proton events are accompanied by deep fading of the solar radio emission in the decameter range, which coin-cides in time with CME registration. It has also been shown that fading is characterized by fading depth, the frequency bandwidth in which the fading occurs, as well as the duration of the fading and the frequency at which the maximum fading depth is observed. Further detailed studies have shown that for proton events accompanied by fading of the solar radio emission in the decameter range, the relationship between the intensity of the SCR proton flux and the CME velocity is much worse than for events without fading of the solar radio emission in the decameter range. However, it was foundthat for such events, the relationship between the flux of SCR protons and the CME velocity significantly increases if we take into account the fading depth of the solar radio emission in the decameter range.Earlier in (Isaeva, 2019), the results of a study of the relationship between the intensity of fading of the continuum of noise storms with the parameters of X-ray bursts, with the CME velocity and the velocity of coronal shock waves, as well as with the intensity of the SCR proton flux were presented. This paper presents the results of studying the relationship between the intensity of the SCR proton flux withthe parameters of type II and IV radio bursts, as well as with the CME velocity and with the velocity of coronal shock waves, depending on the intensity of fading of the solar radio emission in the decameter range at a frequency of 27 MHz. The frequency of 27 MHz was chosen because in the region of this frequency the maximum fading depth of the solar radio emission in the decameter range is observed.  


Author(s):  
Vivek Kumar Singh ◽  
Satish Chandra ◽  
Sanish Thomas ◽  
Som Kumar Sharma ◽  
Hari Om Vats

Abstract The present work is an effort to investigate possible radial variations in the solar coronal rotation by analyzing the solar radio emission data at 15 different frequencies (275-1755 MHz) for the period starting from July 1994 to May 1999. We used a time series of disk-integrated radio flux recorded daily at these frequencies through radio telescopes situated at Astronomical Observatory of the Jagellonian University in Cracow. The different frequency radiation originates from different heights in the solar corona. Existing models, indicate its origin at the height range from nearly ∼12, 000 km (for emission at 275 MHz), below up to ∼2, 400 km (for emission at 1755 MHz). There are some data gaps in the time series used for the study, so we used statistical analysis using the Lomb-Scargle Periodogram (LSP). This method has successfully estimated the periodicity present in time series even with such data gaps. The rotation period estimated through LSP shows variation in rotation period, which is compared with the earlier reported estimate using auto correlation technique. The present study indicates some similarity as well as contradiction with studies reported earlier. The radial and temporal variation in solar rotation period are presented and discussed for the whole period analyzed.


2021 ◽  
Author(s):  
Peijin Zhang ◽  
Chuanbing Wang ◽  
Eduard Kontar

<p><span>The solar atmosphere is fluctuated and highly refractive for low frequency waves (<300MHz), the observed features of solar radio sources have indicated the existence of complex propagation effects. The propagation effect has two major parts: refraction and scattering, these two parts have combined influence on the observed source size and position of radio imaging and temporal-frequency features in the radio spectroscopy.</span></p><p>We present a parametric simulation for the propagation effect of the radio wave from solar radio bursts, with the method of parametric simulation, we can build connections between the solar atmosphere plasma condition and the observed radio source properties. By comparing the simulation results with the observed source size and property we estimated the scattering rate and the degree of anisotropic of the background electron, and from the simulation results we propose a possible explanation for the co-spatial phenomena of the fundamental wave and harmonic wave in single frequency.</p>


2021 ◽  
Author(s):  
Eduard Kontar ◽  
Hamish Reid

<div>The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts, the brightest astrophysical radio sources detected by humans. The formation and motion of type III fine frequency structures is a puzzle but is commonly believed to be related to plasma turbulence in the solar corona and solar wind. Combining a theoretical framework with kinetic simulations and high-resolution radio type III observations, we quantitatively show that the fine structures are caused by the moving intense clumps of Langmuir waves in a turbulent medium. Our results show how type III fine structure can be used to remotely analyse the intensity and spectrum of compressive density fluctuations, and can infer ambient temperatures in astrophysical plasma, both significantly expanding the current diagnostic potential of solar radio emission.</div><div> </div>


2021 ◽  
Vol 26 (1) ◽  
pp. 74-89
Author(s):  
V. N Melnik ◽  
◽  
A. A. Konovalenko ◽  
V. V. Dorovskyy ◽  
A. Lecacheux ◽  
...  

Purpose: The overview of the scientifi c papers devoted to the study of the solar decameter radio emission with the world’s largest UTR-2 radio telescope (Ukraine) published for the last 50 years. Design/methodology/approach: The study and analysis of the scientifi c papers on both sporadic and quiet (thermal) radiation of the Sun recorded with the UTR-2 radio telescope at the decameter wavelength range. Findings: The most signifi cant observational and theoretical results of the solar radio emission studies obtained at the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine for the last 50 years are given. Conclusions: For the fi rst time, at frequencies below 30 MHz, the Type II bursts, Type IV bursts, S-bursts, drift pairs and spikes have been recorded. The dependences of these bursts parameters on frequency within the frequency band of 9 to 30 MHz were obtained. The models of their generation and propagation were suggested. Moreover, for the fi rst time the fi ne time-frequency structures of the Type III bursts, Type II bursts, Type IV bursts, U- and J-bursts, S-bursts, and drift pairs have been observed due to the high sensitivity and high time-frequency resolutions of the UTR-2 radio telescope. The super-fi ne structure of Type II bursts with a “herringbone” structure was identifi ed, which has never been observed before. New types of bursts were discovered: “caterpillar” bursts, “dog-leg” bursts, Type III bursts with decay, Type III bursts with changing drift rate sign, Type III-like bursts, Jb- and Ub-bursts, etc. An interpretation of the unusually high drift rates and drift rates with alternating signs of the Type III-like bursts was suggested. Based on the dependence of spike durations on frequency, the coronal plasma temperature profi le at the heliocentric heights of 1.5–3RS was determined. Usage of the heliographic and interferometric methods gave the possibility to start studies of the spatial characteristics – sizes and locations of the bursts emission sources. Thus, it was shown that at the decameter band, the Type III burst durations were defi ned by the emission source linear sizes, whereas the spike durations were governed by the collision times in the source plasma. It was experimentally proved that the effective brightness temperatures of the sources of solar sporadic radio emission at the decameter band may reach values of 1014–1015 K. In addition, it was found that the radii of the quiet Sun at frequencies 20 and 25 MHz are close to the distances from the Sun at which the local plasma frequency is equal to the corresponding observed frequency of radio emission in the Baumbach–Allen model. Key words: UTR-2; Sun; decameter radio emission; radio bursts; corona


Solar Physics ◽  
2021 ◽  
Vol 296 (3) ◽  
Author(s):  
Mahender Aroori ◽  
Panditi Vemareddy ◽  
Partha Chowdhury ◽  
Ganji Yellaiah

Author(s):  
O. A. Alekseev ◽  
◽  
S. A. Pulinets ◽  
P. A. Budnikov ◽  
V. B. Serebriakov ◽  
...  

The article is devoted to the analysis of the development and control of the operation of the functional mock-up of the information service for automated monitoring and short-term forecasting of severe earthquakes in the Kamchatka-Sakhalin region. The tasks of the service mock-up concerning the collection, processing of data on earthquake precursors, the forecasting of severe (earthquake magnitude 6 or more) earthquakes in the form of estimates of the times of their onset, coordinates of epicenters (latitude and longitude) and earthquake magnitudes are determined. Taking the geoinformational character of the initial data on the approaching earthquakes as the basis for constructing the mock-up of the service, a geo-integration platform is proposed. This allows the integration of the information resources of the earthquake precursor monitoring systems, the functions of processing monitoring information into earthquake forecasts, the results of generating earthquake forecasts and their presentation to consumers into a single geoinformation environment. The composition of the service mock-up and the functioning of such elements as microservices are considered: collection and processing data from receivers of radio navigation signals of the GPS/GLONASS systems; collection and processing of data on the global distribution of TEC in the ionosphere; collection and processing of data on geomagnetic conditions, the flux of solar radio emission, thermal anomalies, as well as data concerning the atmospheric anomalies over the test site area and a unit for presenting and communicating the results of the operation of the information service mock-up for automated monitoring and short-term forecasting of severe earthquakes. The results of service operation are illustrated with the help of examples of retrospective forecasting of a number of severe earthquakes that occurred over the past 10 years in the Kamchatka-Sakhalin region, according to their precursors.


2020 ◽  
Vol 642 ◽  
pp. A151
Author(s):  
D. E. Morosan ◽  
E. Palmerio ◽  
J. E. Räsänen ◽  
E. K. J. Kilpua ◽  
J. Magdalenić ◽  
...  

Context. Coronal mass ejections (CMEs) are large eruptions of magnetised plasma from the Sun that are often accompanied by solar radio bursts produced by accelerated electrons. Aims. A powerful source for accelerating electron beams are CME-driven shocks, however, there are other mechanisms capable of accelerating electrons during a CME eruption. So far, studies have relied on the traditional classification of solar radio bursts into five groups (Type I–V) based mainly on their shapes and characteristics in dynamic spectra. Here, we aim to determine the origin of moving radio bursts associated with a CME that do not fit into the present classification of the solar radio emission. Methods. By using radio imaging from the Nançay Radioheliograph, combined with observations from the Solar Dynamics Observatory, Solar and Heliospheric Observatory, and Solar Terrestrial Relations Observatory spacecraft, we investigate the moving radio bursts accompanying two subsequent CMEs on 22 May 2013. We use three-dimensional reconstructions of the two associated CME eruptions to show the possible origin of the observed radio emission. Results. We identified three moving radio bursts at unusually high altitudes in the corona that are located at the northern CME flank and move outwards synchronously with the CME. The radio bursts correspond to fine-structured emission in dynamic spectra with durations of ∼1 s, and they may show forward or reverse frequency drifts. Since the CME expands closely following an earlier CME, a low coronal CME–CME interaction is likely responsible for the observed radio emission. Conclusions. For the first time, we report the existence of new types of short duration bursts, which are signatures of electron beams accelerated at the CME flank. Two subsequent CMEs originating from the same region and propagating in similar directions provide a complex configuration of the ambient magnetic field and favourable conditions for the creation of collapsing magnetic traps. These traps are formed if a CME-driven wave, such as a shock wave, is likely to intersect surrounding magnetic field lines twice. Electrons will thus be further accelerated at the mirror points created at these intersections and eventually escape to produce bursts of plasma emission with forward and reverse drifts.


Sign in / Sign up

Export Citation Format

Share Document