scholarly journals Cooling of Neutron Stars: Accurate Treatment of Thermal Conduction

1981 ◽  
Vol 95 ◽  
pp. 339-341
Author(s):  
N. Itoh ◽  
K. Nomoto ◽  
S. Tsuruta ◽  
T. Murai

Most of the neutron star cooling calculations with the only exception of Malone's (1974) have assumed an isothermal stellar core. Here we report on a neutron star cooling calculation which makes full use of the stellar evolution code and the recent thermal conductivity calculations by Flowers and Itoh (1976, 1979).

2020 ◽  
Vol 496 (4) ◽  
pp. 5052-5071 ◽  
Author(s):  
A Y Potekhin ◽  
D A Zyuzin ◽  
D G Yakovlev ◽  
M V Beznogov ◽  
Yu A Shibanov

ABSTRACT Ages and thermal luminosities of neutron stars, inferred from observations, can be interpreted with the aid of the neutron star cooling theory to gain information on the properties of superdense matter in neutron-star interiors. We present a survey of estimated ages, surface temperatures, and thermal luminosities of middle-aged neutron stars with relatively weak or moderately strong magnetic fields, which can be useful for these purposes. The catalogue includes results selected from the literature, supplemented with new results of spectral analysis of a few cooling neutron stars. The data are compared with the theory. We show that overall agreement of theoretical cooling curves with observations improves substantially for models where neutron superfluidity in stellar core is weak.


2017 ◽  
Vol 13 (S337) ◽  
pp. 213-216
Author(s):  
Wynn C. G. Ho ◽  
Nils Andersson ◽  
Vanessa Graber

AbstractA superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest that magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core retains or is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106 − 107yr. We estimate the size of flux free regions at 107yr to be ≲ 100m for a magnetic field of 1011G and possibly smaller for stronger field strengths.


1983 ◽  
Vol 101 ◽  
pp. 509-512
Author(s):  
K. Nomoto ◽  
S. Tsuruta

The exciting observational developments in recent years (see Seward, Helfand, Harnden, Becker, etc., in this volume) have made it worthwhile to reexamine neutron star cooling theories. Here we shall give an intermediate report on our work.


2013 ◽  
Vol 23 ◽  
pp. 165-169
Author(s):  
CHENGMIN ZHANG ◽  
YUANYUE PAN ◽  
ALI TAANI

The various types of pulsars are classified in the magnetic and spin period (B-P) diagram, by which one can recognize their properties there. We also investigate the relation of radio pulsars and X-ray neutron stars, and their distribution characteristics, implying their evolution links. B-P diagram is divided by the special lines, e.g. spin-up line and "death line", which indicate the evolution information of pulsars. Like Hertzsprung-Russell (H-R) diagram of showing the stellar evolution or "lives of stars", we try to develop B-P diagram as a function of representing the evolution track of neutron star.


1981 ◽  
Vol 93 ◽  
pp. 231-232
Author(s):  
S. Tsuruta ◽  
T. Murai ◽  
K. Nomoto ◽  
N. Itoh

There are serious discrepancies among some of the recent neutron star cooling calculations by various groups. We have been investigating the possible source of these discrepancies. In this paper, we report our findings. We also report the preliminary result of our most recent cooling calculations without assuming an isothermal stellar evolution code. In this work, we used the currently existing best energy transport theories, as well as general relativity, both in thermodynamics and hydrodynamics.


Author(s):  
Akira Dohi ◽  
Ken’ichiro Nakazato ◽  
Masa-aki Hashimoto ◽  
Matsuo Yasuhide ◽  
Tsuneo Noda

Abstract Whether fast cooling processes occur or not is crucial for the thermal evolution of neutron stars. In particular, the threshold of the direct Urca process, which is one of the fast cooling processes, is determined by the interior proton fraction $Y_p$, or the nuclear symmetry energy. Since recent observations indicate the small radius of neutron stars, a low value is preferred for the symmetry energy. In this study, simulations of neutron star cooling are performed adopting three models for the equation of state (EoS): Togashi, Shen, and LS220 EoSs. The Togashi EoS has been recently constructed with realistic nuclear potentials under finite temperature, and found to account for the small radius of neutron stars. As a result, we find that, since the direct Urca process is forbidden, the neutron star cooling is slow with use of the Togashi EoS. This is because the symmetry energy of Togashi EoS is lower than those of other EoSs. Hence, in order to account for observed age and surface temperature of isolated neutron stars with the use of the Togashi EoS, other fast cooling processes are needed regardless of the surface composition.


Pulsars ◽  
1981 ◽  
pp. 339-341
Author(s):  
N. Itoh ◽  
K. Nomoto ◽  
S. Tsuruta ◽  
T. Murai

2020 ◽  
Vol 498 (1) ◽  
pp. 344-354 ◽  
Author(s):  
J-B Wei ◽  
G F Burgio ◽  
H-J Schulze ◽  
D Zappalà

ABSTRACT We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner–Hartree–Fock approach with different quark models. We then analyse the neutron star cooling curves predicted by the different models and single out the preferred ones. We find that the possibility of neutron p-wave pairing can be excluded in our scenario.


1987 ◽  
Vol 125 ◽  
pp. 439-446
Author(s):  
Naoki Itoh

Recent developments in the standard theory of neutron star cooling is critically reviewed. Emphasis is placed on the recent developments in the calculations of thermal conductivity and neutrino energy loss rates.


2018 ◽  
Vol 609 ◽  
pp. A74 ◽  
Author(s):  
A. Y. Potekhin ◽  
G. Chabrier

Aims. We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their crusts. Methods. We use a finite-difference code for simulation of neutron-star thermal evolution on timescales from hours to megayears with an updated microphysics input. The consideration of short timescales (≲1 yr) is made possible by a treatment of the heat-blanketing envelope without the quasistationary approximation inherent to its treatment in traditional neutron-star cooling codes. For the strongly magnetized neutron stars, we take into account the effects of Landau quantization on thermodynamic functions and thermal conductivities. We simulate cooling of ordinary neutron stars and magnetars with non-accreted and accreted crusts and compare the results with observations. Results. Suppression of radiative and conductive opacities in strongly quantizing magnetic fields and formation of a condensed radiating surface substantially enhance the photon luminosity at early ages, making the life of magnetars brighter but shorter. These effects together with the effect of strong proton superfluidity, which slows down the cooling of kiloyear-aged neutron stars, can explain thermal luminosities of about a half of magnetars without invoking heating mechanisms. Observed thermal luminosities of other magnetars are still higher than theoretical predictions, which implies heating, but the effects of quantizing magnetic fields and baryon superfluidity help to reduce the discrepancy.


Sign in / Sign up

Export Citation Format

Share Document