scholarly journals Mass Loss from Central Stars of Planetary Nebulae

1983 ◽  
Vol 103 ◽  
pp. 323-335 ◽  
Author(s):  
M. Perinotto

Stellar winds have been revealed in a large fraction of central stars of planetary nebulae from P Cygni profiles observed with the IUE satellite. The relevant lines are essentially the resonance lines NV λ 1240, Si IV λ 1397, CIV λ 1549 and the subordinate lines OIV∗ λ 1342, 0V∗ λ 1371, NIV∗ λ 1579. Edge velocities are of the order of 1000-3000 km s−1, similar to the case of population I O stars. Detailed determinations of the mass loss rate have been performed for NGC 6543, NGC 2371, IC 2149 and IC 3568 with values between 4.10−9 to 7. 10−7 Mo yr−1. The accuracy of these determinations is not well known. It is however clear from the variety of observed profiles in these and in several other objects that properties of the winds (ionization structure, etc.) varies considerably from object to object and that very likely the mass loss rate will span over a large interval. Some possible consequences of these winds are discussed.

2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


1993 ◽  
Vol 155 ◽  
pp. 85-85 ◽  
Author(s):  
L. Bianchi ◽  
G. De Francesco

We present IUE observations of some nuclei of Planetary Nebulae. From these data we derive the stellar photospheric parameters (Teff Lbol, log g), and the wind characteristics (velocity, mass loss rate). Teff, R∗, Lbol are derived from UV low resolution spectra, combining optical and radio data, from Bianchi (1988) or from new IUE data, with the same method (fit of the UV continuum with model atmospheres for high gravity stars, after correcting for reddening and for the contribution of continuum emission by the nebular gas). P Cygni profiles from IUE high resolution spectra are fitted with the SEI method and V∞ is derived. The non-LTE ionisation in the wind and the mass loss rate are computed as in Bianchi et al. (1986). Details are given in a forthcoming paper. The results for a first group of objects are given in the Table below.


1981 ◽  
Vol 59 ◽  
pp. 45-50
Author(s):  
Mario Perinotto ◽  
Piero Benvenuti ◽  
Carla Cacciari

AbstractFrom a high resolution spectrum taken with IUE, the central star of the planetary nebula IC 2149 is found to exibit a wind with edge velocity of 1440 ± 100 km s-1. Our preliminary evaluation of the associated mass loss rate gives 10-8 M0 yr-1. Other planetary nebulae nuclei are studied with low resolution IUE spectra and indications are found of mass loss rates consistent with the above value.


1989 ◽  
Vol 131 ◽  
pp. 543-544
Author(s):  
M. Schmidt-Voigt

The relation between nebular excitation E(He II λ4686/Hβ-ratio) and absolute visual magnitude of the central star (CS) is compared with hydrodynamical models of planetary nebulae (PNe) from Schmidt-Voigt and Köppen (Astron. Astrophys., 174, 211 and 223) (see figure below, data from D. Schönberner, Astron. Astrophys., 169, 189). Models marked by drawn lines have a 0.644 M⊙ CS following a Schönberner track, an initially expelled PN of 0.1 M⊙, and different mass loss rates of the precursor star on the AGB, described by the Reimers parameter η;η = 1 corresponds to a mass loss rate of 1.55 × 10−6M⊙ α−1 the dashed line model has a higher initially expelled mass (0.3 M⊙), the dash-dotted line model a CS of 0.6 M⊙ which evolves more slowly. Model numbers refer to the above cited studies. Since MV increases with evolutionary time, the MV axis represents a (highly) nonlinear time axis: for MV < 4 the CS heats up towards its temperature maximum and the PN is optically thin. Differences for high excitation nebulae are most probably due to different helium abundances. When the rate of ionizing photons decreases as the nuclear energy sources extinguish (MV > 4), the excitation may decline, depending on the density in the nebula. For the so called “accreting models” (M > 10−6M⊙ α−1) the mass accretion from the AGB wind determines the density hence nebular excitation. For an AGB mass loss rate M < 10−5M⊙α−1 the numerical results approximately fit an exponential law E= E0exp (-M⊙) with E0 ≊ 1.1 and M⊙ ≊ 6.1 × 10−6M⊙ α−1. From the spread of the observed E(MV = 4) we conclude a mean AGB mass loss rate of 6.+3.3−2.3 10−6M⊙ α−1 within 1σ error bars. Obviously the model 11 reproduces the data best since most of the observed objects are found in the dark shadowed regions of the histogram. This is totally consistent with our previous results (cited above). The colliding-wind models, having no initially PN, behave quite similar as model 11.


1991 ◽  
Vol 143 ◽  
pp. 281-288
Author(s):  
M.J. Barlow

The future use of space-borne IR spectroscopy to determine the ionization structure and abundances in the outer winds of WR stars is described. A mass loss rate of 1.7×10-5 M⊙ yr–1 has been derived from 10 μm photometry of the WO2 star Sanduleak 5 (WR 142). The He/H number ratios in the winds of P Cyg and AG Car have been derived from a recombination line analysis of their 1-4 μm spectra and mass loss rates of 2.2×10-5 M⊙ yr–1 and 3.7×10-5 M⊙ yr–1 have been respectively derived for them.


1993 ◽  
Vol 155 ◽  
pp. 483-483
Author(s):  
S.K. Górny

A grid of homogeneous models of evolution of hydrogen burning planetary nebulae nuclei, assuming different stellar winds and the zero points for the post-AGB evolution, have been constructed from original Schönberners tracks. Following a simplified line-driven wind theory the mass loss rate has been adopted to be


2020 ◽  
Vol 637 ◽  
pp. A91 ◽  
Author(s):  
I. El Mellah ◽  
J. Bolte ◽  
L. Decin ◽  
W. Homan ◽  
R. Keppens

Context. The late evolutionary phase of low- and intermediate-mass stars is strongly constrained by their mass-loss rate, which is orders of magnitude higher than during the main sequence. The wind surrounding these cool expanded stars frequently shows nonspherical symmetry, which is thought to be due to an unseen companion orbiting the donor star. The imprints left in the outflow carry information about the companion and also the launching mechanism of these dust-driven winds. Aims. We study the morphology of the circumbinary envelope and identify the conditions of formation of a wind-captured disk around the companion. Long-term orbital changes induced by mass loss and mass transfer to the secondary are also investigated. We pay particular attention to oxygen-rich, that is slowly accelerating, outflows in order to look for systematic differences between the dynamics of the wind around carbon and oxygen-rich asymptotic giant branch (AGB) stars. Methods. We present a model based on a parametrized wind acceleration and a reduced number of dimensionless parameters to connect the wind morphology to the properties of the underlying binary system. Thanks to the high performance code MPI-AMRVAC, we ran an extensive set of 72 three-dimensional hydrodynamics simulations of a progressively accelerating wind propagating in the Roche potential of a mass-losing evolved star in orbit with a main sequence companion. The highly adaptive mesh refinement that we used, enabled us to resolve the flow structure both in the immediate vicinity of the secondary, where bow shocks, outflows, and wind-captured disks form, and up to 40 orbital separations, where spiral arms, arcs, and equatorial density enhancements develop. Results. When the companion is deeply engulfed in the wind, the lower terminal wind speeds and more progressive wind acceleration around oxygen-rich AGB stars make them more prone than carbon-rich AGB stars to display more disturbed outflows, a disk-like structure around the companion, and a wind concentrated in the orbital plane. In these configurations, a large fraction of the wind is captured by the companion, which leads to a significant shrinking of the orbit over the mass-loss timescale, if the donor star is at least a few times more massive than its companion. In the other cases, an increase of the orbital separation is to be expected, though at a rate lower than the mass-loss rate of the donor star. Provided the companion has a mass of at least a tenth of the mass of the donor star, it can compress the wind in the orbital plane up to large distances. Conclusions. The grid of models that we computed covers a wide scope of configurations: We vary the terminal wind speed relative to the orbital speed, the extension of the dust condensation region around the cool evolved star relative to the orbital separation, and the mass ratio, and we consider a carbon-rich and an oxygen-rich donor star. It provides a convenient frame of reference to interpret high-resolution maps of the outflows surrounding cool evolved stars.


2000 ◽  
Vol 175 ◽  
pp. 632-635
Author(s):  
J.E. Bjorkman ◽  
B.P. Abbott

AbstractUsing the wind-compressed disk model to determine the density and velocity of a rapidly rotating wind, we calculate the 2-D ionization structure and corresponding line profiles. We find that previous estimates of the mass-loss rate based on spherically symmetric models may be a factor of 5–10 too small.


2007 ◽  
Vol 3 (S243) ◽  
pp. 299-306 ◽  
Author(s):  
Sean Matt ◽  
Ralph E. Pudritz

AbstractStellar winds may be important for angular momentum transport from accreting T Tauri stars, but the nature of these winds is still not well-constrained. We present some simulation results for hypothetical, hot (∼ 106 K) coronal winds from T Tauri stars, and we calculate the expected emission properties. For the high mass loss rates required to solve the angular momentum problem, we find that the radiative losses will be much greater than can be powered by the accretion process. We place an upper limit to the mass loss rate from accretion-powered coronal winds of ∼ 10−11M yr−1. We conclude that accretion powered stellar winds are still a promising scenario for solving the stellar angular momentum problem, but the winds must be cool (e.g., 104 K) and thus are not driven by thermal pressure.


2018 ◽  
Vol 615 ◽  
pp. A28 ◽  
Author(s):  
L. Decin ◽  
A. M. S. Richards ◽  
T. Danilovich ◽  
W. Homan ◽  
J. A. Nuth

Context. Low and intermediate mass stars are known to power strong stellar winds when evolving through the asymptotic giant branch (AGB) phase. Initial mass, luminosity, temperature, and composition determine the pulsation characteristics of the star and the dust species formed in the pulsating photospheric layers. Radiation pressure on these grains triggers the onset of a stellar wind. However, as of today, we still cannot predict the wind mass-loss rates and wind velocities from first principles neither do we know which species are the first to condense in the upper atmospheric regions. Aims. We aim to characterise the dominant physical, dynamical, and chemical processes in the inner wind region of two archetypical oxygen-rich (C/O < 1) AGB stars, that is, the low mass-loss rate AGB star R Dor (Ṁ ~ 1 × 10−7 M⊙ yr−1) and the high mass-loss rate AGB star IK Tau (Ṁ ~ 5 × 10−6 M⊙ yr−1). The purpose of this study is to observe the key molecular species contributing to the formation of dust grains and to cross-link the observed line brightnesses of several species to the global and local properties of the star and its wind. Methods. A spectral line and imaging survey of IK Tau and R Dor was made with ALMA between 335 and 362 GHz (band 7) at a spatial resolution of ~150 mas, which corresponds to the locus of the main dust formation region of both targets. Results. Some two hundred spectral features from 15 molecules (and their isotopologues) were observed, including rotational lines in both the ground and vibrationally excited states (up to v = 5 for SiO). Detected species include the gaseous precursors of dust grains such as SiO, AlO, AlOH, TiO, and TiO2. We present a spectral atlas for both stars and the parameters of all detected spectral features. A clear dichotomy for the sulphur chemistry is seen: while CS, SiS, SO, and SO2 are abundantly present in IK Tau, only SO and SO2 are detected in R Dor. Also other species such as NaCl, NS, AlO, and AlOH display a completely different behaviour. From some selected species, the minor isotopologues can be used to assess the isotopic ratios. The channel maps of many species prove that both large and small-scale inhomogeneities persist in the inner wind of both stars in the form of blobs, arcs, and/or a disk. The high sensitivity of ALMA allows us to spot the impact of these correlated density structures in the spectral line profiles. The spectral lines often display a half width at zero intensity much larger than expected from the terminal velocity, v∞, previously derived for both objects (36 km s−1 versus v∞~ 17.7 km s−1 for IK Tau and 23 km s−1 versus v∞~ 5.5 km s−1 for R Dor). Both a more complex 3D morphology and a more forceful wind acceleration of the (underlying) isotropic wind can explain this trend. The formation of fractal grains in the region beyond ~400 mas can potentially account for the latter scenario. From the continuum map, we deduce a dust mass of ~3.7 × 10−7 M⊙ and ~2 × 10−8 M⊙ for IK Tau and R Dor, respectively. Conclusions. The observations presented here provide important constraints on the properties of these two oxygen-dominated AGB stellar winds. In particular, the ALMA data prove that both the dynamical and chemical properties are vastly different for this high mass-loss rate (IK Tau) and low mass-loss rate (R Dor) star.


Sign in / Sign up

Export Citation Format

Share Document