scholarly journals Influence of the Stellar Winds on the Evolution of the Planetary Nebula Nuclei

1993 ◽  
Vol 155 ◽  
pp. 483-483
Author(s):  
S.K. Górny

A grid of homogeneous models of evolution of hydrogen burning planetary nebulae nuclei, assuming different stellar winds and the zero points for the post-AGB evolution, have been constructed from original Schönberners tracks. Following a simplified line-driven wind theory the mass loss rate has been adopted to be

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89
Author(s):  
Efrat Sabach

We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0 . 001 and Z = 0 . 004 , and compare with the evolution with solar metallicity, Z = 0 . 02 . We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function.


1981 ◽  
Vol 59 ◽  
pp. 265-270
Author(s):  
L.R. Yungelson ◽  
A.G. Massevitch ◽  
A.V. Tutukov

It is shown that mass loss by stellar wind with rates observed in O, B-stars cannot change qualitatively their evolution in the core hydrogen-burning stage. The effects, that are usually attributed to the mass loss, can be explained by other causes: e.g., duplicity or enlarged chemically homogeneous stellar cores.The significance of mass loss by stellar wind for the evolution of massive stars was studied extensively by numerous authors (see e.g. Chiosi et al. (1979) and references therein). However, the problem is unclear as yet. There does not exist any satisfactory theory of mass loss by stars. Therefore one is usually forced to assume that mass loss rate depends on some input parameters.


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


1993 ◽  
Vol 155 ◽  
pp. 332-332 ◽  
Author(s):  
P. García-Lario ◽  
A. Manchado ◽  
S.R. Pottasch

A new evolutionary interpretation of the sequence of colours observed in the IRAS two-colour diagram by AGB and post-AGB stars is given, which is capable of explaining the observational properties of both kind of objects. It is useful to define a parameter λ to define the position of a given star in this “infrared main sequence” (IRMS). Adopting and from the analysis of the expansion velocities, mass loss rates and luminosities observed in a selected sample of non-variable OH/IR stars with no optical counterpart in the Galactic bulge as a function of λ, we conclude that the position in the IRAS two-colour diagram at which a star leaves the IRMS (λmax) only depends on the initial mass Mz of the progenitor star, so that only massive objects can reach the upper end of this sequence. The relation found is: Expansion velocities increase with the initial mass while every point in the IRMS is found to be associated to a certain value of the mass loss rate. This model also predicts the evolution with time of the mass loss rate during the AGB as a function of the initial mass of the progenitor star, and confirms that most known planetary nebulae are the result of the evolution of considerably massive stars (between 2–3 solar masses) which means that the contribution of processed material to the interstellar medium is considerably higher than what theoretical models predict. Type I PNe are the result of the evolution of 3 — 5 M⊙ progenitors while progenitors with Mi ≤ 1.2 M⊙ probably do not give PNe. The model is also in agreement with the narrow distribution of core masses found in central stars of PNe and white dwarfs and with the usual expansion velocities found in OH/IR stars.


2020 ◽  
Vol 493 (3) ◽  
pp. 3938-3946 ◽  
Author(s):  
Joachim M Bestenlehner

ABSTRACT Mass loss through stellar winds plays a dominant role in the evolution of massive stars. In particular, the mass-loss rates of very massive stars ($\gt 100\, M_{\odot}$) are highly uncertain. Such stars display Wolf–Rayet spectral morphologies (WNh), whilst on the main sequence. Metal-poor very massive stars are progenitors of gamma-ray bursts and pair instability supernovae. In this study, we extended the widely used stellar wind theory by Castor, Abbott & Klein from the optically thin (O star) to the optically thick main-sequence (WNh) wind regime. In particular, we modify the mass-loss rate formula in a way that we are able to explain the empirical mass-loss dependence on the Eddington parameter (Γe). The new mass-loss recipe is suitable for incorporation into current stellar evolution models for massive and very massive stars. It makes verifiable predictions, namely how the mass-loss rate scales with metallicity and at which Eddington parameter the transition from optically thin O star to optically thick WNh star winds occurs. In the case of the star cluster R136 in the Large Magellanic Cloud we find in the optically thin wind regime $\dot{M} \propto \Gamma _{\rm e}^{3}$, while in the optically thick wind regime $\dot{M} \propto 1/ (1 - \Gamma _{\rm e})^{3.5}$. The transition from optically thin to optically thick winds occurs at Γe, trans ≈ 0.47. The transition mass-loss rate is $\log \dot{M}~(\mathrm{M}_{\odot } \, \mathrm{yr}^{-1}) \approx -4.76 \pm 0.18$, which is in line with the prediction by Vink & Gräfener assuming a volume filling factor of $f_{\rm V} = 0.23_{-0.15}^{+0.40}$.


1993 ◽  
Vol 155 ◽  
pp. 85-85 ◽  
Author(s):  
L. Bianchi ◽  
G. De Francesco

We present IUE observations of some nuclei of Planetary Nebulae. From these data we derive the stellar photospheric parameters (Teff Lbol, log g), and the wind characteristics (velocity, mass loss rate). Teff, R∗, Lbol are derived from UV low resolution spectra, combining optical and radio data, from Bianchi (1988) or from new IUE data, with the same method (fit of the UV continuum with model atmospheres for high gravity stars, after correcting for reddening and for the contribution of continuum emission by the nebular gas). P Cygni profiles from IUE high resolution spectra are fitted with the SEI method and V∞ is derived. The non-LTE ionisation in the wind and the mass loss rate are computed as in Bianchi et al. (1986). Details are given in a forthcoming paper. The results for a first group of objects are given in the Table below.


1980 ◽  
Vol 88 ◽  
pp. 115-121
Author(s):  
D. Vanbeveren ◽  
C. De Loore

It becomes more and more evident that for close binary evolution during Roche lobe overflow as well mass transfer as mass loss occurs. When a mass element ΔM is expelled from the primary during this phase, a fraction β is transferred to the secondary; the remaining part leaves the system. Moreover, angular momentum leaves the system, and also this fraction has to be specified; this fraction is related to a parameter α (Vanbeveren et al., 1979). For the computation of the evolution of massive close binaries also mass loss due to stellar wind of both components, prior to the Roche lobe overflow has to be taken into account. The mass loss rate Ṁ due to radiation driven stellar winds can be expressed as


2007 ◽  
Vol 3 (S243) ◽  
pp. 299-306 ◽  
Author(s):  
Sean Matt ◽  
Ralph E. Pudritz

AbstractStellar winds may be important for angular momentum transport from accreting T Tauri stars, but the nature of these winds is still not well-constrained. We present some simulation results for hypothetical, hot (∼ 106 K) coronal winds from T Tauri stars, and we calculate the expected emission properties. For the high mass loss rates required to solve the angular momentum problem, we find that the radiative losses will be much greater than can be powered by the accretion process. We place an upper limit to the mass loss rate from accretion-powered coronal winds of ∼ 10−11M yr−1. We conclude that accretion powered stellar winds are still a promising scenario for solving the stellar angular momentum problem, but the winds must be cool (e.g., 104 K) and thus are not driven by thermal pressure.


2018 ◽  
Vol 615 ◽  
pp. A28 ◽  
Author(s):  
L. Decin ◽  
A. M. S. Richards ◽  
T. Danilovich ◽  
W. Homan ◽  
J. A. Nuth

Context. Low and intermediate mass stars are known to power strong stellar winds when evolving through the asymptotic giant branch (AGB) phase. Initial mass, luminosity, temperature, and composition determine the pulsation characteristics of the star and the dust species formed in the pulsating photospheric layers. Radiation pressure on these grains triggers the onset of a stellar wind. However, as of today, we still cannot predict the wind mass-loss rates and wind velocities from first principles neither do we know which species are the first to condense in the upper atmospheric regions. Aims. We aim to characterise the dominant physical, dynamical, and chemical processes in the inner wind region of two archetypical oxygen-rich (C/O < 1) AGB stars, that is, the low mass-loss rate AGB star R Dor (Ṁ ~ 1 × 10−7 M⊙ yr−1) and the high mass-loss rate AGB star IK Tau (Ṁ ~ 5 × 10−6 M⊙ yr−1). The purpose of this study is to observe the key molecular species contributing to the formation of dust grains and to cross-link the observed line brightnesses of several species to the global and local properties of the star and its wind. Methods. A spectral line and imaging survey of IK Tau and R Dor was made with ALMA between 335 and 362 GHz (band 7) at a spatial resolution of ~150 mas, which corresponds to the locus of the main dust formation region of both targets. Results. Some two hundred spectral features from 15 molecules (and their isotopologues) were observed, including rotational lines in both the ground and vibrationally excited states (up to v = 5 for SiO). Detected species include the gaseous precursors of dust grains such as SiO, AlO, AlOH, TiO, and TiO2. We present a spectral atlas for both stars and the parameters of all detected spectral features. A clear dichotomy for the sulphur chemistry is seen: while CS, SiS, SO, and SO2 are abundantly present in IK Tau, only SO and SO2 are detected in R Dor. Also other species such as NaCl, NS, AlO, and AlOH display a completely different behaviour. From some selected species, the minor isotopologues can be used to assess the isotopic ratios. The channel maps of many species prove that both large and small-scale inhomogeneities persist in the inner wind of both stars in the form of blobs, arcs, and/or a disk. The high sensitivity of ALMA allows us to spot the impact of these correlated density structures in the spectral line profiles. The spectral lines often display a half width at zero intensity much larger than expected from the terminal velocity, v∞, previously derived for both objects (36 km s−1 versus v∞~ 17.7 km s−1 for IK Tau and 23 km s−1 versus v∞~ 5.5 km s−1 for R Dor). Both a more complex 3D morphology and a more forceful wind acceleration of the (underlying) isotropic wind can explain this trend. The formation of fractal grains in the region beyond ~400 mas can potentially account for the latter scenario. From the continuum map, we deduce a dust mass of ~3.7 × 10−7 M⊙ and ~2 × 10−8 M⊙ for IK Tau and R Dor, respectively. Conclusions. The observations presented here provide important constraints on the properties of these two oxygen-dominated AGB stellar winds. In particular, the ALMA data prove that both the dynamical and chemical properties are vastly different for this high mass-loss rate (IK Tau) and low mass-loss rate (R Dor) star.


1981 ◽  
Vol 59 ◽  
pp. 45-50
Author(s):  
Mario Perinotto ◽  
Piero Benvenuti ◽  
Carla Cacciari

AbstractFrom a high resolution spectrum taken with IUE, the central star of the planetary nebula IC 2149 is found to exibit a wind with edge velocity of 1440 ± 100 km s-1. Our preliminary evaluation of the associated mass loss rate gives 10-8 M0 yr-1. Other planetary nebulae nuclei are studied with low resolution IUE spectra and indications are found of mass loss rates consistent with the above value.


Sign in / Sign up

Export Citation Format

Share Document