scholarly journals Integrated Optics in Astronomical Interferometry

1994 ◽  
Vol 158 ◽  
pp. 261-271 ◽  
Author(s):  
V. Coudé du Foresto

Integrated optical components (mostly single-mode fibers and couplers) can be used to achieve several functions that are needed in interferometry: coherent beam transportation and recombination, pathlength modulation and control for fringe tracking and double Fourier interferometry, spatial filtering of the wavefront and interferogram calibration. Their potential is assessed and the main problems encountered in their implementation are discussed: dispersion, polarization behavior, and especially starlight injection.

1989 ◽  
Author(s):  
Denys Haux ◽  
Michel Di Maggio ◽  
Sandrine Samso ◽  
Roland Hakoun ◽  
Jean Martin

1997 ◽  
Vol 486 ◽  
Author(s):  
Tim D. Bestwick

AbstractActive Silicon integrated Optical Circuits (ASOC™) is a technology based on single-mode rib waveguides formed on silicon-on-insulator that is being used to manufacture commercial integrated optics components. Silicon waveguides have excellent properties for many applications in the 1.3 and 1.55 micron telecommunications bands including relatively low loss. An important aspect of ASOC™ technology is the development of a set of waveguide-based elements that can be assembled into practical integrated optics devices. The fundamental waveguide elements include bends, couplers and fiber-waveguide interfaces, and additional elements include doped structures and waveguide gratings. Discrete lasers and photodetectors are also incorporated into ASOC™ technology to form hybrid devices. The technology is being used to manufacture devices for applications in telecomunications and optical sensing, the first major product being a two-wavelength single-fiber bi-directional optical transceiver.


2020 ◽  
Vol 10 (10) ◽  
pp. 3400
Author(s):  
Linas Minkevičius ◽  
Liang Qi ◽  
Agnieszka Siemion ◽  
Domas Jokubauskis ◽  
Aleksander Sešek ◽  
...  

Terahertz (THz) imaging and spectroscopy set-ups require fine optical alignment or precise control of spatial mode profile. We demonstrate universal, convenient and easy-to-use imaging—resonant and broadband antenna coupled ultrasensitive titanium-based—dedicated to accurately adjust and control spatial mode profiles without additional focusing optical components of weak power THz sources. Versatile operation of the devices is shown using different kinds of THz—electronic multiplier sources, optical THz mixer-based frequency domain and femtosecond optoelectronic THz time-domain spectrometers as well as optically pumped molecular THz laser. Features of the microbolometers within 0.15–0.6 THz range are exposed and discussed, their ability to detect spatial mode profiles beyond the antennas resonances, up to 2.52 THz, are explored. Polarization-sensitive mode control possibilities are examined in details. The suitability of the resonant antenna-coupled microbolometers to resolve low-absorbing objects at 0.3 THz is revealed via direct, dark field and phase contrast imaging techniques as well.


2014 ◽  
Vol 569 ◽  
pp. A2 ◽  
Author(s):  
É. Choquet ◽  
J. Menu ◽  
G. Perrin ◽  
F. Cassaing ◽  
S. Lacour ◽  
...  

2003 ◽  
Author(s):  
J. Hernandez Marco ◽  
A. Martin Joven ◽  
L. Torner

2010 ◽  
Vol 53 (3) ◽  
pp. 342-346 ◽  
Author(s):  
M. M. Vekshin ◽  
E. B. Khotnyanskaya ◽  
V. A. Nikitin ◽  
N. A. Yakovenko

Sign in / Sign up

Export Citation Format

Share Document