scholarly journals On the Progenitors of Type Ia Supernovae

2002 ◽  
Vol 187 ◽  
pp. 103-108
Author(s):  
X.-D. Li ◽  
E. P. J. van den Heuvel

Supersoft X-ray sources (hereafter SSS) are a class of luminous (bolometric luminosity ~ 1037 − 1038 erg s−1) objects with a characteristic radiation temperature of 30 to 60 eV (Hasinger 1994; Kahabka & Trümper 1996). The most popular model for SSS is that they are massive white dwarfs steadily burning nuclear fuel accreted from a more massive binary companion at a rate near or above the Eddington limit (van den Heuvel et al. 1992).

2011 ◽  
Vol 7 (S281) ◽  
pp. 172-180
Author(s):  
Mariko Kato

AbstractI review various phenomena associated with mass-accreting white dwarfs (WDs) in relation to progenitors of Type Ia supernovae (SNe Ia). The WD mass can be estimated from light curve analysis in multiwavelength bands based on the theory of optically thick winds. In the single degenerate scenario of SNe Ia, two main channels are known, i.e., WD + main sequence (MS) channel and WD + red giant (RG) channel. In each channel, a typical binary undergoes three evolutionary stages before explosion, i.e., the wind phase, supersoft X-ray source (SSS) phase, and recurrent nova phase, in this order because the accretion rate decreases with time as the companion mass decreases. For some accreting WDs we can identify the corresponding stage of evolution. Intermittent supersoft X-ray sources like RX J0513.9−6951 and V Sge correspond to wind phase objects. For the SSS phase, CAL 87-type objects correspond to the WD+MS channel. For the WD + RG channel, soft X-ray observations of early type galaxies give statistical evidence of SSS phase binaries. Recurrent novae of U Sco-type and RS Oph-type correspond to the WD + MS channel and WD + RG channel, respectively. The majority of recurrent novae host a very massive WD (≳ 1.35 M⊙) and often show a plateau phase in their optical light curves corresponding to the long-lasting supersoft X-ray phase. These properties are indications of increasing WD masses.


1996 ◽  
Vol 158 ◽  
pp. 407-415 ◽  
Author(s):  
Mario Livio ◽  
David Branch ◽  
L. R. Yungelson ◽  
Francesca Boffi ◽  
E. Baron

AbstractThe question of the possible progenitors of supernovae Type la (SNe la) is examined. It is argued that SNe la are thermonuclear explosions of accreting C-O white dwarfs. The existing observational evidence favors somewhat models in which the exploding star ignites carbon upon reaching the Chandrasekhar mass. A careful examination of all the potential progenitor classes reveals that when realization frequencies are combined with a variety of observational charcteristics, no single class emerges as containing the obvious progenitors. It is argued that coalescing white dwarfs or supersoft X-ray sources are the most likely progenitor systems. A few critical observations which could help identify the progenitors unambiguously are discussed.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2018 ◽  
Vol 865 (1) ◽  
pp. 15 ◽  
Author(s):  
Ken J. Shen ◽  
Douglas Boubert ◽  
Boris T. Gänsicke ◽  
Saurabh W. Jha ◽  
Jennifer E. Andrews ◽  
...  

2021 ◽  
Vol 919 (2) ◽  
pp. 126
Author(s):  
Samuel J. Boos ◽  
Dean M. Townsley ◽  
Ken J. Shen ◽  
Spencer Caldwell ◽  
Broxton J. Miles

2004 ◽  
Vol 194 ◽  
pp. 111-112
Author(s):  
Lilia Ferrario

AbstractI argue that the observational evidence for white dwarf-white dwarf mergers supports the view that they give rise to ultra-massive white dwarfs or neutron stars through accretion induced collapse. The implications for the progenitors of Type Ia SNe are discussed.


2020 ◽  
Vol 497 (2) ◽  
pp. 1895-1903 ◽  
Author(s):  
E C Wilson ◽  
J Nordhaus

ABSTRACT The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution.


2019 ◽  
Vol 484 (1) ◽  
pp. 1317-1324 ◽  
Author(s):  
J Kuuttila ◽  
M Gilfanov ◽  
I R Seitenzahl ◽  
T E Woods ◽  
F P A Vogt

2016 ◽  
Vol 26 (1) ◽  
Author(s):  
Dongdong Liu ◽  
Bo Wang ◽  
Chengyuan Wu

AbstractRecent studies suggested that at least some of the observed SNe Ia originate from the double-degenerate model, which involves the merging of double carbon-oxygen white dwarfs (CO WDs). However, the delay time distributions predicted by previous theoretical studies are inconsistent with the observed SNe Ia at the early epoches of < 1 Gyr and old epoches of > 8 Gyr. Previous studies suggested that the CO WD+He subgiant channel has a significant contribution to the formation of massive double CO WDs, the merging ofwhich may produce SNe Ia. In the presentwork, we added this channel into the double-degenerate model to investigate its influence on the delay time distributions of SNe Ia. We found that the delay time distributions would match better with the observed SNe Ia when the CO WD+He subgiant channel is included in the double-degenerate model.


Sign in / Sign up

Export Citation Format

Share Document