Diagnostic Tools for Sunspots: the Molecules C2, Mg H and Ti O

1994 ◽  
Vol 154 ◽  
pp. 489-492
Author(s):  
K Sinha

The aim of the present communication is to draw attention to the value of simultaneous observations of sunspot umbrae and the quiet Sun in selected molecular lines. It is felt that such observations may lead to an array of sunspot models which account for sunspot sizes, magnetic field strengths, and the solar activity cycle.

1994 ◽  
Vol 12 (4) ◽  
pp. 279-285 ◽  
Author(s):  
I. Sabbah

Abstract. An analysis of interplanetary magnetic field (IMF) and plasma data taken near 1 AU during solar activity cycle 21 reveals the following. 1. The yearly averaged spiral angle shows a solar cycle dependence. 2. The spiral angle north of the current sheet is 2.4° higher than south of it during both epochs of positive and negative polarities. 3. The included angle is 4.8° higher during the epoch of positive polarity than during the epoch of negative polarity. 4. The asymmetries in the number of away and toward IMF days are correlated with the asymmetries in solar activity. 5. The solar plasma north of the current sheet is hotter, faster and less dense than south of it during the epoch of negative polarity. 6. An asymmetry in the averaged filed magnitude is absent for solar cycle 21.


Solar Physics ◽  
2005 ◽  
Vol 227 (2) ◽  
pp. 387-399 ◽  
Author(s):  
Kazuyuki Hakamada ◽  
Masayoshi Kojima ◽  
Tomoaki Ohmi ◽  
Munetoshi Tokumaru ◽  
Ken’ichi Fujiki

2020 ◽  
Vol 636 ◽  
pp. A103
Author(s):  
Verena Heidrich-Meisner ◽  
Lars Berger ◽  
Robert F. Wimmer-Schweingruber

Context. The properties of a solar wind stream are determined by its source region and by transport effects. Independently of the solar wind type, the solar wind measured in situ is always affected by both. This means that reliably determining the solar wind type from in situ observations is useful for the analysis of its solar origin and its evolution during the travel time to the spacecraft that observes the solar wind. In addition, the solar wind type also influences the interaction of the solar wind with other plasma such as Earth’s magnetosphere. Aims. We consider the proton-proton collisional age as an ordering parameter for the solar wind at 1 AU and explore its relation to the solar wind classification scheme developed by Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70). We use this to show that explicit magnetic field information is not required for this solar wind classification. Furthermore, we illustrate that solar wind classification schemes that rely on threshold values of solar wind parameters should depend on the phase in the solar activity cycle since the respective parameters change with the solar activity cycle. Methods. The categorization of the solar wind following Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) was taken as our reference for determining the solar wind type. Based on the observation that the three basic solar wind types from this categorization cover different regimes in terms of proton-proton collisional age acol, p-p, we propose a simplified solar wind classification scheme that is only based on the proton-proton collisional age. We call the resulting method the PAC solar wind classifier. For this purpose, we derive time-dependent threshold values in the proton-proton collisional age for two variants of the proposed PAC scheme: (1) similarity-PAC is based on the similarity to the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) scheme, and (2) distribution-PAC is based directly on the distribution of the proton-proton collisional age. Results. The proposed simplified solar wind categorization scheme based on the proton-proton collisional age represents an equivalent alternative to the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) solar wind classification scheme and leads to a classification that is very similar to the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) scheme. The proposed PAC solar wind categorization separates coronal hole wind from helmet-streamer plasma as well as helmet-streamer plasma (slow solar wind without a current sheet crossing) from sector-reversal plasma (slow solar wind with a current sheet crossing). Unlike the full Xu & Borovsky (2015, J. Geophys. Res.: Space Phys., 120, 70) scheme, PAC does not require information on the magnetic field as input. Conclusions. The solar wind is well ordered by the proton-proton collisional age. This implies underlying intrinsic relationships between the plasma properties, in particular, proton temperature and magnetic field strength in each plasma regime. We argue that sector-reversal plasma is a combination of particularly slow and dense solar wind and most stream interaction boundaries. Most solar wind parameters (e.g., the magnetic field strength, B, and the oxygen charge state ratio no7+/no6+) change with the solar activity cycle. Thus, all solar wind categorization schemes based on threshold values need to be adapted to the solar activity cycle as well. Because it does not require magnetic field information but only proton plasma measurements, the proposed PAC solar wind classifier can be applied directly to solar wind data from the Solar and Heliospheric Observatoty (SOHO), which is not equipped with a magnetometer.


2020 ◽  
Vol 60 (5) ◽  
pp. 586-596 ◽  
Author(s):  
A. D. Danilov ◽  
A. V. Konstantinova

Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
V. Courtillot ◽  
F. Lopes ◽  
J. L. Le Mouël

AbstractThis article deals with the prediction of the upcoming solar activity cycle, Solar Cycle 25. We propose that astronomical ephemeris, specifically taken from the catalogs of aphelia of the four Jovian planets, could be drivers of variations in solar activity, represented by the series of sunspot numbers (SSN) from 1749 to 2020. We use singular spectrum analysis (SSA) to associate components with similar periods in the ephemeris and SSN. We determine the transfer function between the two data sets. We improve the match in successive steps: first with Jupiter only, then with the four Jovian planets and finally including commensurable periods of pairs and pairs of pairs of the Jovian planets (following Mörth and Schlamminger in Planetary Motion, Sunspots and Climate, Solar-Terrestrial Influences on Weather and Climate, 193, 1979). The transfer function can be applied to the ephemeris to predict future cycles. We test this with success using the “hindcast prediction” of Solar Cycles 21 to 24, using only data preceding these cycles, and by analyzing separately two 130 and 140 year-long halves of the original series. We conclude with a prediction of Solar Cycle 25 that can be compared to a dozen predictions by other authors: the maximum would occur in 2026.2 (± 1 yr) and reach an amplitude of 97.6 (± 7.8), similar to that of Solar Cycle 24, therefore sketching a new “Modern minimum”, following the Dalton and Gleissberg minima.


Sign in / Sign up

Export Citation Format

Share Document