scholarly journals Star Formation and the Galaxy

1977 ◽  
Vol 75 ◽  
pp. 3-19
Author(s):  
F. J. Kerr

My task is to discuss the galactic context of star formation and to consider how large-scale phenomena in the Galaxy can influence the processes of star formation. This review, and the whole of the first session, are supposed to set the stage for the later consideration of protostellar and prestellar objects and smaller-scale effects in general.

1991 ◽  
Vol 147 ◽  
pp. 21-24
Author(s):  
T. G. Sitnik

The age distribution of stars and stellar groupings was studied in the galactic large-scale star-gas complexes (SGCs).


2019 ◽  
Vol 621 ◽  
pp. A131 ◽  
Author(s):  
C. Maier ◽  
B. L. Ziegler ◽  
C. P. Haines ◽  
G. P. Smith

Aims. As large-scale structures in the Universe develop with time, environmental effects become more and more important as a star formation quenching mechanism. Since the effects of environmental quenching are more pronounced in denser structures that form at later times, we seek to constrain environmental quenching processes using cluster galaxies at z <  0.3. Methods. We explored seven clusters from the Local Cluster Substructure Survey (LoCuSS) at 0.15 <  z <  0.26 with spectra of 1965 cluster members in a mass-complete sample from the ACReS (Arizona Cluster Redshift Survey) Hectospec survey covering a region that corresponds to about three virial radii for each cluster. We measured fluxes of [O II] λ 3727, Hβ, [O III] λ 5007, Hα, and [N II] λ 6584 emission lines of cluster members, enabling us to unambiguously derive O/H gas metallicities. We also measured star formation rates (SFRs) from extinction-corrected Hα fluxes. We compared our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec as part of the same survey. Results. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin of 1 − 3.2 × 1010 M⊙ and 3.2 − 10 × 1010 M⊙, respectively. But their O/H values are displaced, in the lower mass bin, to higher values (significance 2.4σ) at projected radii of R <  R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R ∼ R200 by stopping the inflow of gas. We find tentative evidence that the metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time because these galaxies consume available disk gas. We use the observed fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1−2 Gyr, which is defined as the time between the moment the galaxy passes R200 until complete quenching of star formation. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1−2 Gyr, and meanwhile the galaxies travel to denser inner regions of the cluster. This is followed by a “rapid” phase, i.e., a rapid complete quenching of star formation due to the increasing ram pressure toward the cluster center that can also strip the cold gas in massive galaxies.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


2019 ◽  
Vol 627 ◽  
pp. A175 ◽  
Author(s):  
S.-N. X. Medina ◽  
J. S. Urquhart ◽  
S. A. Dzib ◽  
A. Brunthaler ◽  
B. Cotton ◽  
...  

Context. Radio continuum surveys of the Galactic plane are an excellent way to identify different source populations such as planetary nebulae, H II regions, and radio stars and characterize their statistical properties. The Global View of Star Formation in the Milky Way (GLOSTAR) survey will study the star formation in the Galactic plane between −2° < ℓ < 85° and |b| < 1° with unprecedented sensitivity in both flux density (∼40 μJy beam−1) and range ofangular scales (∼1".5 to the largest radio structures in the Galaxy). Aims. In this paper we present the first results obtained from a radio continuum map of a 16-square-degree-sized region of the Galactic plane centered on ℓ = 32° and b = 0° (28° < ℓ < 36° and |b| < 1°). This map has a resolution of 18″ and a sensitivity of ∼60−150 μJy beam−1. Methods. We present data acquired in 40 h of observations with the VLA in D-configuration. Two 1 GHz wide sub-bands were observed simultaneously and they were centered at 4.7 and 6.9 GHz. These data were calibrated and imaged using the Obit software package. The source extraction was performed using the BLOBCAT software package and verified through a combination of visual inspection and cross-matching with other radio and mid-infrared surveys. Results. The final catalog consists of 1575 discrete radio sources and 27 large scale structures (including W43 and W44). By cross-matching with other catalogs and calculating the spectral indices (S(ν) ∝ να), we have classified 231 continuum sources as H II regions, 37 as ionization fronts, and 46 as planetary nebulae. The longitude and latitude distribution and negative spectral indices are all consistent with the vast majority of the unclassified sources being extragalactic background sources. Conclusions. We present a catalog of 1575 radio continuum sources and discuss their physical properties, emission nature, and relation to previously reported data. These first GLOSTAR results have increased the number of reliable H II regions in this part of the Galaxy by a factor of four.


2004 ◽  
Vol 217 ◽  
pp. 422-423 ◽  
Author(s):  
Cathy Horellou ◽  
Bärbel Koribalski

The luminous barred galaxy NGC 6872 is one of the largest spiral galaxies known. Star formation occurs all along the arms, which extend over more than 100 kpc. The galaxy experiences tidal perturbations from the nearby companion IC 4970 passing by on a low-inclination, prograde orbit. We have mapped the large-scale distribution and kinematics of the atomic gas (HI) in the NGC 6872/IC 4970 system and carried out N-body simulations with stars and gas. HI is absent from the central region; on the other hand, large gas concentrations are found at the tip of the tidal arms, spatially coincident with the blue stellar clusters and with the peaks of the Hα distribution. We use that remarkable system to investigate the evolution of gas and stars in a close prograde encounter, examine the influence of a dark matter halo on the length of the tidal tails, and test models of collisionally induced star formation.


1995 ◽  
Vol 148 ◽  
pp. 258-266
Author(s):  
Gerard Gilmore ◽  
Rodrigo Ibata

AbstractModern models of Galaxy formation make fairly specific predictions which are amenable to detailed tests with galactic kinematic and chemical abundance data. For example, popular Cold Dark Matter models ‘predict’ growth of the Galaxy about a central core, which should contain the oldest stars. Later accretion of material forms the outer halo and the disks, while continuing accretion will continue to affect the kinematic structure of both the outer halo and the thin disk. This picture, which contains aspects of both the monolithic (‘ELS’) and the multifragment (‘Searle-Zinn’) pictures often discussed in chemical evolution models, makes some specific predictions which can be tested. The essential feature of these predictions is that they are believable only for the largest scale effects. Large scale properties of the Galaxy must be measured to test them. It is these studies which need large angular scale data. One specific example of current interest is the ‘prediction’ that mergers of small satellites are an essential feature of galactic evolution. This leads one to look for kinematic and spatial structures, and ‘moving groups’, as a primary test of such models.


1979 ◽  
Vol 84 ◽  
pp. 431-440
Author(s):  
Beatrice M. Tinsley

The structure and evolution of the Galaxy are reviewed in terms of interactions among various components, including its immediate surroundings. Emphasis is given to the large-scale processes responsible for star formation and chemical evolution, which are seen to be controlled by interactions between the ISM and other components and by gas flows. A model for formation of the Galaxy is outlined, in which the spheroidal component results from mergers of former small galaxies, and the disk has been accreted from outlying diffuse matter.


1991 ◽  
Vol 147 ◽  
pp. 21-24
Author(s):  
T. G. Sitnik

The age distribution of stars and stellar groupings was studied in the galactic large-scale star-gas complexes (SGCs).


2018 ◽  
Vol 609 ◽  
pp. A60 ◽  
Author(s):  
S. Khoperskov ◽  
M. Haywood ◽  
P. Di Matteo ◽  
M. D. Lehnert ◽  
F. Combes

Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), “quenching”, in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9–10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20−35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.


Sign in / Sign up

Export Citation Format

Share Document