cold star
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 257 (2) ◽  
pp. 43
Author(s):  
Adam K. Leroy ◽  
Eva Schinnerer ◽  
Annie Hughes ◽  
Erik Rosolowsky ◽  
Jérôme Pety ◽  
...  

Abstract We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby (d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


2019 ◽  
Vol 15 (S341) ◽  
pp. 83-87
Author(s):  
E. Iani ◽  
G. Rodighiero ◽  
J. Fritz ◽  
G. Cresci ◽  
C. Mancini ◽  
...  

AbstractBrightest cluster galaxies (BCGs) residing in cool-core clusters are known to be the stage of intricate baryon cycle phenomena (e.g. gas inflows, AGN outflows, star formation feedback). The scenarios describing the observed properties of these galaxies are still controversial, suffering from limitations due to the spatial resolving power of the instruments, specifically for galaxies beyond the Local Universe. However, the dramatic improvements introduced by the integral-field unit instruments (e.g. MUSE) could shed light on the physical processes driving the evolution of these galaxies. We present an extensive analysis of the stellar and gas properties (i.e. kinematics, stellar mass, star formation rate) of the radio-loud BCG sitting at the centre of the X-ray luminous cool-core cluster Abell 2667 (z = 0.23), based on MUSE data. Our results indicate that the BCG is a massive elliptical, hosting an AGN that is possibly undergoing accretion of cold star-forming clouds of ICM or galactic cannibalism.


2019 ◽  
Vol 622 ◽  
pp. A64 ◽  
Author(s):  
Cecilia Bacchini ◽  
Filippo Fraternali ◽  
Giuliano Iorio ◽  
Gabriele Pezzulli

Star formation (SF) laws are fundamental relations between the gas content of a galaxy and its star formation rate (SFR) and play key roles in galaxy evolution models. In this paper, we present new empirical SF laws of disc galaxies based on volume densities. Following the assumption of hydrostatic equilibrium, we calculated the radial growth of the thickness of the gaseous discs in the combined gravitational potential of dark matter, stars, and gas for 12 nearby star-forming galaxies. This allowed us to convert the observed surface densities of gas and SFR into the deprojected volume densities. We found a tight correlation with slope in the range 1.3–1.9 between the volume densities of gas (HI+H2) and the SFR with a significantly smaller scatter than the surface-based (Kennicutt) law and no change in the slope over five orders of magnitude. This indicates that taking into account the radial increase of the thickness of galaxy discs is crucial to reconstruct their three-dimensional density profiles, in particular in their outskirts. Moreover, our result suggests that the break in the slope seen in the Kennicutt law is due to disc flaring rather than to a drop of the SF efficiency at low surface densities. Surprisingly, we discovered an unexpected correlation between the volume densities of HI and SFR, indicating that the atomic gas is a good tracer of the cold star-forming gas, especially in low density HI-dominated environments.


2003 ◽  
Vol 12 (04) ◽  
pp. 667-676 ◽  
Author(s):  
M. GOVENDER ◽  
K. S. GOVINDER ◽  
S. D. MAHARAJ ◽  
R. SHARMA ◽  
S. MUKHERJEE ◽  
...  

We present here a simple model of radiative gravitational collapse with radial heat flux which describes qualitatively the stages close to the formation of a superdense cold star. Starting with a static general solution for a cold star, the model can generate solutions for the earlier evolutionary stages. The temporal evolution of the model is specified by solving the junction conditions appropriate for radiating gravitational collapse. The results will be useful in constructing models for the evolution of X-ray pulsars, like Her X-1.


1990 ◽  
Vol 42 (10) ◽  
pp. 3386-3387 ◽  
Author(s):  
Itzhak Goldman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document