scholarly journals Large Scale Galactic Structure

1995 ◽  
Vol 148 ◽  
pp. 258-266
Author(s):  
Gerard Gilmore ◽  
Rodrigo Ibata

AbstractModern models of Galaxy formation make fairly specific predictions which are amenable to detailed tests with galactic kinematic and chemical abundance data. For example, popular Cold Dark Matter models ‘predict’ growth of the Galaxy about a central core, which should contain the oldest stars. Later accretion of material forms the outer halo and the disks, while continuing accretion will continue to affect the kinematic structure of both the outer halo and the thin disk. This picture, which contains aspects of both the monolithic (‘ELS’) and the multifragment (‘Searle-Zinn’) pictures often discussed in chemical evolution models, makes some specific predictions which can be tested. The essential feature of these predictions is that they are believable only for the largest scale effects. Large scale properties of the Galaxy must be measured to test them. It is these studies which need large angular scale data. One specific example of current interest is the ‘prediction’ that mergers of small satellites are an essential feature of galactic evolution. This leads one to look for kinematic and spatial structures, and ‘moving groups’, as a primary test of such models.

2019 ◽  
Vol 15 (S352) ◽  
pp. 43-43
Author(s):  
Pratika Dayal

AbstractGalaxy formation in the first billion years mark a time of great upheaval in the history of the Universe: the first galaxies started both the ‘metal age’ as well as the era of cosmic reionization. I will start by reviewing the dust production mechanisms and dust masses for high-redshift galaxies which will be revolutionized in the ALMA era. I will then show how the JWST will be an invaluable experiment to shed light on the impact of reionization feedback on early galaxy formation. As we look forward towards the era of 21cm cosmology, I will highlight the crucial and urgent synergies required between 21cm facilities (such as the SKA) and galaxy experiments (JWST, E-ELT and Subaru to name a few) to understand the physics of the epoch of reionization that remains a crucial frontier in the field of astrophysics and physical cosmology. Time permitting, I will try to give a flavour of how the assembly of early galaxies, accessible with the forthcoming JWST, can provide a powerful testbed for Dark Matter models beyond ‘Cold Dark Matter’.


2008 ◽  
Vol 4 (S254) ◽  
pp. 179-190 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractI discuss how the chemical abundance distributions, kinematics and age distributions of stars in the thin and thick disks of the Galaxy can be used to decipher the merger history of the Milky Way, a typical large galaxy. The observational evidence points to a rather quiescent past merging history, unusual in the context of the ‘consensus’ cold-dark-matter cosmology favoured from observations of structure on scales larger than individual galaxies.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


2008 ◽  
Vol 4 (S259) ◽  
pp. 603-612 ◽  
Author(s):  
Wolfgang Reich ◽  
Patricia Reich

AbstractOur position inside the Galaxy requires all-sky surveys to reveal its large-scale properties. The zero-level calibration of all-sky surveys differs from standard ‘relative’ measurements, where a source is measured in respect to its surroundings. All-sky surveys aim to include emission structures of all angular scales exceeding their angular resolution including isotropic emission components. Synchrotron radiation is the dominating emission process in the Galaxy up to frequencies of a few GHz, where numerous ground based surveys of the total intensity up to 1.4 GHz exist. Its polarization properties were just recently mapped for the entire sky at 1.4 GHz. All-sky total intensity and linear polarization maps from WMAP for frequencies of 23 GHz and higher became available and complement existing sky maps. Galactic plane surveys have higher angular resolution using large single-dish or synthesis telescopes. Polarized diffuse emission shows structures with no relation to total intensity emission resulting from Faraday rotation effects in the interstellar medium. The interpretation of these polarization structures critically depends on a correct setting of the absolute zero-level in Stokes U and Q.


1988 ◽  
Vol 130 ◽  
pp. 259-271
Author(s):  
Carlos S. Frenk

Modern N-body techniques allow the study of galaxy formation in the wider context of the formation of large-scale structure in the Universe. The results of such a study within the cold dark matter cosmogony are described. Dark galactic halos form at relatively recent epochs. Their properties and abundance are similar to those inferred for the halos of real galaxies. Massive halos tend to form preferentially in high density regions and as a result the galaxies that form within them are significantly more clustered than the underlying mass. This natural bias may be strong enough to reconcile the observed clustering of galaxies with the assumption that Ω = 1.


2020 ◽  
Vol 493 (1) ◽  
pp. 1361-1374 ◽  
Author(s):  
Arya Farahi ◽  
Matthew Ho ◽  
Hy Trac

ABSTRACT Cold dark matter model predicts that the large-scale structure grows hierarchically. Small dark matter haloes form first. Then, they grow gradually via continuous merger and accretion. These haloes host the majority of baryonic matter in the Universe in the form of hot gas and cold stellar phase. Determining how baryons are partitioned into these phases requires detailed modelling of galaxy formation and their assembly history. It is speculated that formation time of the same mass haloes might be correlated with their baryonic content. To evaluate this hypothesis, we employ haloes of mass above $10^{14}\, \mathrm{M}_{\odot }$ realized by TNG300 solution of the IllustrisTNG project. Formation time is not directly observable. Hence, we rely on the magnitude gap between the brightest and the fourth brightest halo galaxy member, which is shown that traces formation time of the host halo. We compute the conditional statistics of the stellar and gas content of haloes conditioned on their total mass and magnitude gap. We find a strong correlation between magnitude gap and gas mass, BCG stellar mass, and satellite galaxies stellar mass, but not the total stellar mass of halo. Conditioning on the magnitude gap can reduce the scatter about halo property–halo mass relation and has a significant impact on the conditional covariance. Reduction in the scatter can be as significant as 30 per cent, which implies more accurate halo mass prediction. Incorporating the magnitude gap has a potential to improve cosmological constraints using halo abundance and allows us to gain insight into the baryon evolution within these systems.


2010 ◽  
Vol 6 (S277) ◽  
pp. 263-266
Author(s):  
Bruno Thooris ◽  
Daniel Pomarède

AbstractOur understanding of the structuring of the Universe from large-scale cosmological structures down to the formation of galaxies now largely benefits from numerical simulations. The RAMSES code, relying on the Adaptive Mesh Refinement technique, is used to perform massively parallel simulations at multiple scales. The interactive, immersive, three-dimensional visualization of such complex simulations is a challenge that is addressed using the SDvision software package. Several rendering techniques are available, including ray-casting and isosurface reconstruction, to explore the simulated volumes at various resolution levels and construct temporal sequences. These techniques are illustrated in the context of different classes of simulations. We first report on the visualization of the HORIZON Galaxy Formation Simulation at MareNostrum, a cosmological simulation with detailed physics at work in the galaxy formation process. We then carry on in the context of an intermediate zoom simulation leading to the formation of a Milky-Way like galaxy. Finally, we present a variety of simulations of interacting galaxies, including a case-study of the Antennae Galaxies interaction.


2020 ◽  
Vol 497 (2) ◽  
pp. 2393-2417 ◽  
Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
T K Chan ◽  
Philip F Hopkins ◽  
...  

ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.


2019 ◽  
Vol 489 (1) ◽  
pp. 1436-1450 ◽  
Author(s):  
Jianhui Lian ◽  
Daniel Thomas ◽  
Cheng Li ◽  
Zheng Zheng ◽  
Claudia Maraston ◽  
...  

ABSTRACT Within the standard model of hierarchical galaxy formation in a Λ cold dark matter universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper, we investigate whether and how the gas metallicity and the star formation surface density (ΣSFR) depend on galaxy environment. To this end, we analyse a sample of 1162 local, star-forming galaxies from the galaxy survey Mapping Nearby Galaxies at APO (MaNGA). Generally, both parameters do not show any significant dependence on environment. However, in agreement with previous studies, we find that low-mass satellite galaxies are an exception to this rule. The gas metallicity in these objects increases while their ΣSFR decreases slightly with environmental density. The present analysis of MaNGA data allows us to extend this to spatially resolved properties. Our study reveals that the gas metallicity gradients of low-mass satellites flatten and their ΣSFR gradients steepen with increasing environmental density. By extensively exploring a chemical evolution model, we identify two scenarios that are able to explain this pattern: metal-enriched gas accretion or pristine gas inflow with varying accretion time-scales. The latter scenario better matches the observed ΣSFR gradients, and is therefore our preferred solution. In this model, a shorter gas accretion time-scale at larger radii is required. This suggests that ‘outside–in quenching’ governs the star formation processes of low-mass satellite galaxies in dense environments.


Sign in / Sign up

Export Citation Format

Share Document