scholarly journals GLOSTAR: Radio Source Catalog I. 28° <  ℓ < 36° and |b| < 1°

2019 ◽  
Vol 627 ◽  
pp. A175 ◽  
Author(s):  
S.-N. X. Medina ◽  
J. S. Urquhart ◽  
S. A. Dzib ◽  
A. Brunthaler ◽  
B. Cotton ◽  
...  

Context. Radio continuum surveys of the Galactic plane are an excellent way to identify different source populations such as planetary nebulae, H II regions, and radio stars and characterize their statistical properties. The Global View of Star Formation in the Milky Way (GLOSTAR) survey will study the star formation in the Galactic plane between −2° < ℓ < 85° and |b| < 1° with unprecedented sensitivity in both flux density (∼40 μJy beam−1) and range ofangular scales (∼1".5 to the largest radio structures in the Galaxy). Aims. In this paper we present the first results obtained from a radio continuum map of a 16-square-degree-sized region of the Galactic plane centered on ℓ = 32° and b = 0° (28° < ℓ < 36° and |b| < 1°). This map has a resolution of 18″ and a sensitivity of ∼60−150 μJy beam−1. Methods. We present data acquired in 40 h of observations with the VLA in D-configuration. Two 1 GHz wide sub-bands were observed simultaneously and they were centered at 4.7 and 6.9 GHz. These data were calibrated and imaged using the Obit software package. The source extraction was performed using the BLOBCAT software package and verified through a combination of visual inspection and cross-matching with other radio and mid-infrared surveys. Results. The final catalog consists of 1575 discrete radio sources and 27 large scale structures (including W43 and W44). By cross-matching with other catalogs and calculating the spectral indices (S(ν) ∝ να), we have classified 231 continuum sources as H II regions, 37 as ionization fronts, and 46 as planetary nebulae. The longitude and latitude distribution and negative spectral indices are all consistent with the vast majority of the unclassified sources being extragalactic background sources. Conclusions. We present a catalog of 1575 radio continuum sources and discuss their physical properties, emission nature, and relation to previously reported data. These first GLOSTAR results have increased the number of reliable H II regions in this part of the Galaxy by a factor of four.

1981 ◽  
Vol 94 ◽  
pp. 223-224 ◽  
Author(s):  
S. Kearsey ◽  
J. L. Osborne ◽  
S. Phillipps ◽  
C.G.T. Haslam ◽  
C. J. Salter ◽  
...  

The all-sky radio continuum map at 408 MHz presented at this symposium by Haslam et al. can be interpreted in terms of the large-scale 3-dimensional distribution of synchrotron emissivity in the Galaxy when due allowance is made for the thermal emission. Its derivation from a 2-dimensional map must involve a number of assumptions so it is instructive to compare the results of alternative approaches (described in detail in forthcoming papers by the present authors). In both cases the variation of emissivity in the galactic plane is obtained from the observed intensity profile at b=0o and then the z-variation is chosen to give the best fit to the complete map. The observed profile is shown in the figure with and without the contributions of catalogued supernova remnants and HII regions.


2018 ◽  
Vol 609 ◽  
pp. A43 ◽  
Author(s):  
Jin-Long Xu ◽  
Ye Xu ◽  
Chuan-Peng Zhang ◽  
Xiao-Lan Liu ◽  
Naiping Yu ◽  
...  

Aims. We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. Methods. We present the 12CO (J = 1−0), 13CO (J = 1−0) and C18O (J = 1−0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. Radio continuum and infrared archival data were obtained from the NRAO VLA Sky Survey (NVSS), the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey, and the Multi-band Imaging Photometer Survey of the Galaxy (MIPSGAL). To trace massive clumps and extract young stellar objects in G47.06+0.26, we used the BGPS catalog v2.0 and the GLIMPSE I catalog, respectively. Results. The 12CO (J = 1−0) and 13CO (J = 1−0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45′ (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J = 1−0) emission. G47.06+0.26 has a linear mass density of ~361.5 M⊙pc-1. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is ~18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of ~105 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.


1991 ◽  
Vol 144 ◽  
pp. 187-196
Author(s):  
W. Reich

Changes of the cosmic ray electron spectrum throughout the Galaxy have been found, based on the comparison of large-scale radio continuum surveys. These observations are not compatible with the assumption of a static Galactic halo, but indicate the existence of a Galactic wind. Galactic plane surveys reveal sources of cosmic ray electrons in the Galactic disk. Recent studies of the population of radio sources show no evidence for a large number of compact Galactic non-thermal sources. Most of the extended sources are probably HII-regions. Relatively few new supernova remnants (SNRs) with low surface brightness could be identified. Most of the non-thermal emission in the disk-halo interface seems diffuse or unresolved, even at arcmin angular resolution.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


1968 ◽  
Vol 21 (2) ◽  
pp. 167 ◽  
Author(s):  
KW Yates

A recent 85 MHz survey of the southern sky had an absolute calibration accuracy and resolution comparable with a number of surveys made for the northern skies. By combining the results of these surveys in both hemispheres a complete sky map has been produced, and in this paper an analysis is made of the distribution of the medium and high latitude emission. A fundamental difficulty encountered is the identification and isolation of the spurs of emission projecting from the galactic plane. Two hypotheses are proposed. The first attributes the spurs to a large-scale feature associated with the galactic core and the remaining emission to a galactic halo. The second postulates the origin of the spurs within the local spiral arm, which is itself considered to contribute significantly to the high latitude background. An upper-limit estimate of the emissivity of the local arm is made from currently available independent data. Using this result a model local arm is proposed, which, together with an isotropic component from beyond the Galaxy and a small additional galactic component, explains the observed distribution.


2008 ◽  
Vol 4 (S259) ◽  
pp. 603-612 ◽  
Author(s):  
Wolfgang Reich ◽  
Patricia Reich

AbstractOur position inside the Galaxy requires all-sky surveys to reveal its large-scale properties. The zero-level calibration of all-sky surveys differs from standard ‘relative’ measurements, where a source is measured in respect to its surroundings. All-sky surveys aim to include emission structures of all angular scales exceeding their angular resolution including isotropic emission components. Synchrotron radiation is the dominating emission process in the Galaxy up to frequencies of a few GHz, where numerous ground based surveys of the total intensity up to 1.4 GHz exist. Its polarization properties were just recently mapped for the entire sky at 1.4 GHz. All-sky total intensity and linear polarization maps from WMAP for frequencies of 23 GHz and higher became available and complement existing sky maps. Galactic plane surveys have higher angular resolution using large single-dish or synthesis telescopes. Polarized diffuse emission shows structures with no relation to total intensity emission resulting from Faraday rotation effects in the interstellar medium. The interpretation of these polarization structures critically depends on a correct setting of the absolute zero-level in Stokes U and Q.


1991 ◽  
Vol 148 ◽  
pp. 89-95
Author(s):  
S. J. Meatheringham

The Small and Large Magellanic Clouds (SMC, LMC) are of considerable interest from a kinematical viewpoint. The tidal interation of the Clouds with each other and with the Galaxy appears to have been quite significant in recent times (Murai & Fujimoto 1980). The SMC in particular appears to have been considerably disrupted by a recent close passage to the LMC (Mathewson & Ford 1984, Mathewson 1984, Mathewson et al. 1986). For the LMC Freeman et al. (1983) found that the young and old populations have significantly different rotation solutions.Planetary Nebulae (PN) form a population with age intermediate between the HI and young clusters and the old Population II clusters. A large number of PN are known in the MCs. Sanduleak et al. (1978) compiled a list of 102 in the LMC and 28 in the SMC. Since then other authors have increased the total number known to approximately 140 in the LMC and 50 in the SMC.


1991 ◽  
Vol 147 ◽  
pp. 21-24
Author(s):  
T. G. Sitnik

The age distribution of stars and stellar groupings was studied in the galactic large-scale star-gas complexes (SGCs).


2019 ◽  
Vol 621 ◽  
pp. A131 ◽  
Author(s):  
C. Maier ◽  
B. L. Ziegler ◽  
C. P. Haines ◽  
G. P. Smith

Aims. As large-scale structures in the Universe develop with time, environmental effects become more and more important as a star formation quenching mechanism. Since the effects of environmental quenching are more pronounced in denser structures that form at later times, we seek to constrain environmental quenching processes using cluster galaxies at z <  0.3. Methods. We explored seven clusters from the Local Cluster Substructure Survey (LoCuSS) at 0.15 <  z <  0.26 with spectra of 1965 cluster members in a mass-complete sample from the ACReS (Arizona Cluster Redshift Survey) Hectospec survey covering a region that corresponds to about three virial radii for each cluster. We measured fluxes of [O II] λ 3727, Hβ, [O III] λ 5007, Hα, and [N II] λ 6584 emission lines of cluster members, enabling us to unambiguously derive O/H gas metallicities. We also measured star formation rates (SFRs) from extinction-corrected Hα fluxes. We compared our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec as part of the same survey. Results. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin of 1 − 3.2 × 1010 M⊙ and 3.2 − 10 × 1010 M⊙, respectively. But their O/H values are displaced, in the lower mass bin, to higher values (significance 2.4σ) at projected radii of R <  R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R ∼ R200 by stopping the inflow of gas. We find tentative evidence that the metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time because these galaxies consume available disk gas. We use the observed fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1−2 Gyr, which is defined as the time between the moment the galaxy passes R200 until complete quenching of star formation. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1−2 Gyr, and meanwhile the galaxies travel to denser inner regions of the cluster. This is followed by a “rapid” phase, i.e., a rapid complete quenching of star formation due to the increasing ram pressure toward the cluster center that can also strip the cold gas in massive galaxies.


1981 ◽  
Vol 4 (2) ◽  
pp. 243-247 ◽  
Author(s):  
W. H. McCutcheon ◽  
B. J. Robinson ◽  
J. B. Whiteoak

Millimetre-wave emission from the CO molecule has proven to be an extremely useful probe of the cold, dense clouds of molecular hydrogen in the Galaxy. Previous studies of the large-scale distribution of CO in the galactic plane (Scoville and Solomon 1975; Burton et al. 1975; Bash and Peters 1976; Burton and Gordon 1978; Solomon et al. 1979b; Cohen et al. 1980) have all been of the northern hemisphere and primarily at longitudes 0° ≤ l ≥ 80°. These studies have revealed the striking characteristic that the CO, and by implication molecular hydrogen clouds, are concentrated in a ring extending from 4 to 8 kpc from the galactic centre. This is in sharp contrast to the atomic hydrogen distribution, which is fairly constant over the extended region from 4 to 13 kpc but correlates well with other Population I indicators.


Sign in / Sign up

Export Citation Format

Share Document