scholarly journals The HR Diagram for Luminous Stars in Nearby Galaxies

1978 ◽  
Vol 80 ◽  
pp. 263-267
Author(s):  
Roberta M. Humphreys

HR diagrams for the stellar populations in other galaxies play a fundamental role in our understanding of the progress of stellar evolution and the effects of possible variations in chemical composition. It is important to compare what little information we have about stars in other galaxies with the same types of stars in our own Milky Way. Basically we are asking - are they the same, and how universal are the processes we observe in our Galaxy?

2012 ◽  
Vol 10 (H16) ◽  
pp. 372-372
Author(s):  
Rok Roškar

AbstractIn recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.


2012 ◽  
Vol 10 (H16) ◽  
pp. 247-248 ◽  
Author(s):  
Young-Wook Lee ◽  
Seok-Joo Joo ◽  
Sang-Il Han ◽  
Chongsam Na ◽  
Dongwook Lim ◽  
...  

Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ω Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).


2009 ◽  
Vol 5 (S268) ◽  
pp. 183-184 ◽  
Author(s):  
A. F. Marino ◽  
G. Piotto ◽  
R. Gratton ◽  
A. P. Milone ◽  
M. Zoccali ◽  
...  

AbstractWe derive abundances of Fe, Na, O, α and s-elements from GIRAFFE@VLT spectra for more than 200 red giant stars in the Milky Way satellite ω Centauri. Our preliminary results are that: (i) we confirm that ω Centauri exhibits large star-to-star metallicity variation (~1.4 dex); (ii) the metallicity distribution reveals the presence of at least five stellar populations with different [Fe/H]; (iii) a distinct Na-O anticorrelation is clearly observed for the metal-poor and metal-intermediate stellar populations while apparently the anticorrelation disappears for the most metal rich populations. Interestingly the Na level grows with iron.


1998 ◽  
Vol 11 (1) ◽  
pp. 571-571
Author(s):  
M. Haywood ◽  
J. Palasi ◽  
A. Gómez ◽  
L. Meillon Dasgal

The Hipparcos catalogue provides an accurate and extensive sampling of the solar neighbourhood HR diagram. The morphology of this diagram depends on selection criteria of the catalogue such as the limiting magnitude, angular separation and on the characteristics of the stellar populations near the sun (space density, metallicity, star formation rate, etc). Since the Hipparcos data are so accurate, one needs to model precisely the different selection bias and, at the same time, parametrize models of the galactic stellar populations with sufficient flexibility that as much information as possible can be grasped from the catalogue. Comparisons between our model and the Hipparcos catalogue will be presented elsewhere. Since the quantity of information contained in the Hipparcoscatalogue is so important, models ought to be complex, and external contraints, obtained prior to any general comparison with the model, are welcome. A major factor that influences the distribution of the stars in the HR diagram is the metallicity. For the late type stars, the metallicity distribution can be best studied by re-analysing a volume-limited sample of stars from the catalogue.


2009 ◽  
Vol 5 (S268) ◽  
pp. 187-188
Author(s):  
Donatella Romano ◽  
M. Tosi ◽  
M. Cignoni ◽  
F. Matteucci ◽  
E. Pancino ◽  
...  

AbstractIn this contribution we discuss the origin of the extreme helium-rich stars which inhabit the blue main sequence (bMS) of the Galactic globular cluster Omega Centauri. In a scenario where the cluster is the surviving remnant of a dwarf galaxy ingested by the Milky Way many Gyr ago, the peculiar chemical composition of the bMS stars can be naturally explained by considering the effects of strong differential galactic winds, which develop owing to multiple supernova explosions in a shallow potential well.


Author(s):  
Bogdan C Ciambur ◽  
Francesca Fragkoudi ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Françoise Combes

Abstract Boxy, peanut– or X–shaped “bulges” are observed in a large fraction of barred galaxies viewed in, or close to, edge-on projection, as well as in the Milky Way. They are the product of dynamical instabilities occurring in stellar bars, which cause the latter to buckle and thicken vertically. Recent studies have found nearby galaxies that harbour two such features arising at different radial scales, in a nested configuration. In this paper we explore the formation of such double peanuts, using a collisionless N–body simulation of a pure disc evolving in isolation within a live dark matter halo, which we analyse in a completely analogous way to observations of real galaxies. In the simulation we find a stable double configuration consisting of two X/peanut structures associated to the same galactic bar – rotating with the same pattern speed – but with different morphology, formation time, and evolution. The inner, conventional peanut-shaped structure forms early via the buckling of the bar, and experiences little evolution once it stabilises. This feature is consistent in terms of size, strength and morphology, with peanut structures observed in nearby galaxies. The outer structure, however, displays a strong X, or “bow-tie”, morphology. It forms just after the inner peanut, and gradually extends in time (within 1 to 1.5 Gyr) to almost the end of the bar, a radial scale where ansae occur. We conclude that, although both structures form, and are dynamically coupled to, the same bar, they are supported by inherently different mechanisms.


2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


1995 ◽  
Vol 10 ◽  
pp. 419-422
Author(s):  
J. Andersen

Stellar models are the means by which we describe and understand the distribution of stars in the HR diagram. A stellar model is, in principle, completely specified by the three fundamental parameters mass, chemical composition, and age. Comparing the properties of models and real stars with the same parameters will tell us if our recipe for constructing stellar models is realistic. Unfortunately, the only star for which all three are known independently of stellar models is the Sun. For stars of other masses and ages we must devise observational tests in which at least one fundamental parameter is unknown. Two such popular test objects are double-lined eclipsing binaries and star clusters.In suitable eclipsing binaries we can determine both masses and chemical composition; the absolute age is unknown, but the same for both stars. Since evolution depends most sensitively on the mass, eclipsing binaries provide a very direct test of the models, but only for two points on a single isochrone. In star clusters, neither ages nor individual masses are known, but the detailed shape and population of a well-observed cluster sequence in the HR diagram provide a number of additional probes into the models.


Sign in / Sign up

Export Citation Format

Share Document