scholarly journals Rossby Number or Rotation Period?

1993 ◽  
Vol 157 ◽  
pp. 141-145
Author(s):  
K. Stȩpień

It is shown that the scaling of rotation periods by a color-dependent parameter (turnover time) improves substantially the observed activity-period relations only for single, main sequence, solar type stars with 0.5 ≲ B – V ≲ 0.8. For other single main sequence stars and for single giants activity indices correlate equally well with rotation period and the Rossby number, or show no correlation with either parameter.

2018 ◽  
Vol 618 ◽  
pp. A48 ◽  
Author(s):  
M. Mittag ◽  
J. H. M. M. Schmitt ◽  
K.-P. Schröder

The connection between stellar rotation, stellar activity, and convective turnover time is revisited with a focus on the sole contribution of magnetic activity to the Ca II H&K emission, the so-called excess flux, and its dimensionless indicator R+HK in relation to other stellar parameters and activity indicators. Our study is based on a sample of 169 main-sequence stars with directly measured Mount Wilson S-indices and rotation periods. The R+HK values are derived from the respective S-indices and related to the rotation periods in various B–V-colour intervals. First, we show that stars with vanishing magnetic activity, i.e. stars whose excess flux index R+HK approaches zero, have a well-defined, colour-dependent rotation period distribution; we also show that this rotation period distribution applies to large samples of cool stars for which rotation periods have recently become available. Second, we use empirical arguments to equate this rotation period distribution with the global convective turnover time, which is an approach that allows us to obtain clear relations between the magnetic activity related excess flux index R+HK, rotation periods, and Rossby numbers. Third, we show that the activity versus Rossby number relations are very similar in the different activity indicators. As a consequence of our study, we emphasize that our Rossby number based on the global convective turnover time approaches but does not exceed unity even for entirely inactive stars. Furthermore, the rotation-activity relations might be universal for different activity indicators once the proper scalings are used.


2004 ◽  
Vol 215 ◽  
pp. 113-122 ◽  
Author(s):  
Robert D. Mathieu

Major photometric monitoring campaigns of star-forming regions in the past decade have provided rich rotation period distributions of pre-main-sequence stars. The rotation periods span more than an order of magnitude in period, with most falling between 1 and 10 days. Thus the broad rotation period distributions found in 100 Myr clusters are already established by an age of 1 Myr. The most rapidly rotating stars are within a factor of 2-3 of their critical velocities; if angular momentum is conserved as they evolve to the ZAMS, these stars may come to exceed their critical velocities. Extensive efforts have been made to find connections between stellar rotation and the presence of protostellar disks; at best only a weak correlation has been found in the largest samples. Magnetic disk-locking is a theoretically attractive mechanism for angular momentum evolution of young stars, but the links between theoretical predictions and observational evidence remain ambiguous. Detailed observational and theoretical studies of the magnetospheric environments will provide better insight into the processes of pre-main-sequence stellar angular momentum evolution.


2019 ◽  
Vol 491 (2) ◽  
pp. 2706-2714
Author(s):  
Fiona Nichols-Fleming ◽  
Eric G Blackman

ABSTRACT The association of star-spots with magnetic fields leads to an expectation that quantities which correlate with magnetic field strength may also correlate with star-spot coverage. Since younger stars spin faster and are more magnetically active, assessing whether star-spot coverage correlates with shorter rotation periods and stellar youth tests these principles. Here, we analyse the star-spot covering fraction versus stellar age for M-, G-, K-, and F-type stars based on previously determined variability and rotation periods of over 30 000 Kepler main-sequence stars. We determine the correlation between age and variability using single and dual power-law best fits. We find that star-spot coverage does indeed decrease with age. Only when the data are binned in an effort to remove the effects of activity cycles of individual stars, do statistically significant power-law fits emerge for each stellar type. Using bin averages, we then find that the star-spot covering fraction scales with the X-ray to bolometric ratio to the power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 d and for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated by variability bins, with the lower branch showing nearly constant star-spot coverage and the upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 d exhibit a transition to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age measurements suggesting a magnetic breaking transition at the solar age, corresponding to period of 24.5 is also of interest.


2006 ◽  
Vol 2 (S239) ◽  
pp. 446-448
Author(s):  
L. T. S. Mendes ◽  
N. R. Landin ◽  
L. P. R. Vaz

AbstractThe Rossby number Ro is an important quantity related to the well-known magnetic activity-rotation correlation for main sequence, solar-type stars. For such stars, Ro can be obtained by a semi-empirical relationship between the convective turnover time τc and the B-V colour index, but an equivalent activity-rotation correlation seems not to exist for pre-main sequence stars. In this work we report theoretical estimates of τc for low-mass, rotating pre-main sequence stars under either the Full Spectrum of Turbulence (FST) or the classical Mixing Length Theory (MLT) convection models. The results for the MLT models show that the lower the convection efficiency the higher τc, while the FST models give τc lower than those for the MLT. The presence of a parametric magnetic field lowers the convection efficiency, resulting in smaller τc values.


1990 ◽  
Vol 138 ◽  
pp. 455-459
Author(s):  
R.B. Teplitskaya ◽  
V.G. Skochilov

Based on an extended list of lower main sequence stars from Rutten (1987), the relation between chromospheric activity and Rossby number has been revised. The increased statistics changes the shape of the curve as compared with that of Noyes et al. (1984). The saturation at small Rossby numbers has disappeared. The dependence on Rossby number in the range of very large Rossby numbers has weakened. The standard deviation of the activity indices from the mean curve is about 40%. This scatter of individual stars is not due to differences in the spectral type or age of the stars.


Author(s):  
Heidi B. Thiemann ◽  
Andrew J. Norton ◽  
Ulrich C. Kolb

Abstract It is well established that late-type main-sequence (MS) stars display a relationship between X-ray activity and the Rossby number, Ro, the ratio of rotation period to the convective turnover time. This manifests itself as a saturated regime (where X-ray activity is constant) and an unsaturated regime (where X-ray activity anti-correlates with Rossby number). However, this relationship breaks down for the fastest rotators. We cross-correlated SuperWASP visually classified photometric light curves and All-Sky Automated Survey for Supernovae automatically classified photometric light curves with XMM-Newton X-ray observations to identify 3 178 stars displaying a photometrically defined rotational modulation in their light curve and corresponding X-ray observations. We fitted a power-law to characterise the rotation–activity relation of 900 MS stars. We identified that automatically classified rotationally modulated light curves are not as reliable as visually classified light curves for this work. We found a power-law index in the unsaturated regime of G- to M-type stars of $\beta=-1.84\,\pm\,0.18$ for the SuperWASP catalogue, in line with the canonical value of $\beta=-2$ . We find evidence of supersaturation in the fastest rotating K-type stars, with a power-law index of $\beta_{s}=1.42\pm0.26$ .


2008 ◽  
Vol 4 (S258) ◽  
pp. 375-382 ◽  
Author(s):  
Eric E. Mamajek

AbstractIt is well established that activity and rotation diminishes during the life of sun-like main sequence (~F7-K2V) stars. Indeed, the evolution of rotation and activity among these stars appears to be so deterministic that their rotation/activity diagnostics are often utilized as estimators of stellar age. A primary motivation for the recent interest in improving the ages of solar-type field dwarfs is in understanding the evolution of debris disks and planetary systems. Reliable isochronal age-dating for field, solar-type main sequence stars is very difficult given the observational uncertainties and multi-Gyr timescales for significant structural evolution. Observationally, significant databases of activity/rotation diagnostics exist for field solar-type field dwarfs (mainly from chromospheric and X-ray activity surveys).But how well can we empirically age-date solar-type field stars using activity/rotation diagnostics?Here I summarize some recent results for F7-K2 dwarfs from an analysis by Mamajek & Hillenbrand (2008), including an improved “gyrochronology” [Period(color, age)] calibration, improved chromospheric (R′HK) and X-ray (log(LX/Lbol)) activity vs. rotation (via Rossby number) relations, and a chromospheric vs. X-ray activity relation that spans four orders of magnitude in log(LX/Lbol). Combining these relations, one can produce predicted chromospheric and X-ray activity isochrones as a function of color and age for solar type dwarfs.


1991 ◽  
Vol 130 ◽  
pp. 353-369 ◽  
Author(s):  
Douglas S. Hall

AbstractSpottedness, as evidenced by photometric variability in 277 late-type binary and single stars, is found to occur when the Rossby number is less than about 2/3. This holds true when the convective turnover time versus B–V relation of Gilliland is used for dwarfs and also for subgiants and giants if their turnover times are twice and four times longer, respectively, than for dwarfs. Differential rotation is found correlated with rotation period (rapidly rotating stars approaching solid-body rotation) and also with lobe-filling factor (the differential rotation coefficient k is 2.5 times larger for F = 0 than F = 1). Also reviewed are latitude extent of spottedness, latitude drift during a solar-type cycle, sector structure and preferential longitudes, starspot lifetimes, and the many observational manifestations of magnetic cycles.


2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.


2008 ◽  
Vol 4 (S258) ◽  
pp. 81-94 ◽  
Author(s):  
Lynne A. Hillenbrand

AbstractThis overview summarizes the age dating methods available for young sub-solar mass stars. Pre-main sequence age diagnostics include the Hertzsprung-Russell (HR) diagram, spectroscopic surface gravity indicators, and lithium depletion; asteroseismology is also showing recent promise. Near and beyond the zero-age main sequence, rotation period or vsiniand activity (coronal and chromospheric) diagnostics along with lithium depletion serve as age proxies. Other authors in this volume present more detail in each of the aforementioned areas. Herein, I focus on pre-main sequence HR diagrams and address the questions: Do empirical young cluster isochrones match theoretical isochrones? Do isochrones predict stellar ages consistent with those derived via other independent techniques? Do the observed apparent luminosity spreads at constant effective temperature correspond to true age spreads? While definitive answers to these questions are not provided, some methods of progression are outlined.


Sign in / Sign up

Export Citation Format

Share Document