scholarly journals Age-related observations of low mass pre-main and young main sequence stars

2008 ◽  
Vol 4 (S258) ◽  
pp. 81-94 ◽  
Author(s):  
Lynne A. Hillenbrand

AbstractThis overview summarizes the age dating methods available for young sub-solar mass stars. Pre-main sequence age diagnostics include the Hertzsprung-Russell (HR) diagram, spectroscopic surface gravity indicators, and lithium depletion; asteroseismology is also showing recent promise. Near and beyond the zero-age main sequence, rotation period or vsiniand activity (coronal and chromospheric) diagnostics along with lithium depletion serve as age proxies. Other authors in this volume present more detail in each of the aforementioned areas. Herein, I focus on pre-main sequence HR diagrams and address the questions: Do empirical young cluster isochrones match theoretical isochrones? Do isochrones predict stellar ages consistent with those derived via other independent techniques? Do the observed apparent luminosity spreads at constant effective temperature correspond to true age spreads? While definitive answers to these questions are not provided, some methods of progression are outlined.

2015 ◽  
Vol 10 (S314) ◽  
pp. 95-98
Author(s):  
Inseok Song

AbstractFor proper interpretations of various phenomena in young stars and planetary systems, knowledge of accurate stellar ages is very important. Among a handful of age dating methods commonly used for young (≲500 Myr) stars, lithium depletion boundary (LDB) ages have recently become the most cited and accepted age estimates. However, because of inconsistencies in theoretical evolutionary models, especially for lithium depletion calculations, one has to be cautious in using LDB ages. For a given luminosity, the lithium depletion process is too slow, causing LDB ages to appear older. Various stellar processes affect the surface lithium abundance, and these effects include star spots, accretion history, and magnetic fields. Until we have a self-consistent theoretical evolutionary model for young stars including all relevant stellar effects, caution should be taken when LDB ages are used.


2003 ◽  
Vol 211 ◽  
pp. 257-260
Author(s):  
Nick Siegler ◽  
Laird M. Close ◽  
Eric E. Mamajek ◽  
Melanie Freed

We have used the adaptive optics system Hōkūpa'a at Gemini North to search for companions from a flux-limited (Ks > 12) survey of 30 nearby M6.0–M7.5 dwarfs. Our observations, which are sensitive to companions with separations > 0.1″ (~ 2.8 AU), detect 3 new binary systems. This implies an overall binary fraction of 9±4% for M6.0–M7.5 binaries. This binary frequency is somewhat less than the 19±7% measured for late M stars and ~ 20% for L stars, but is still statistically consistent. However, the result is significantly lower than the binary fractions observed amongst solar mass main sequence stars (~60%) and early M stars (~35%).


2009 ◽  
Vol 5 (S268) ◽  
pp. 263-268 ◽  
Author(s):  
Karin Lind ◽  
Francesca Primas ◽  
Corinne Charbonnel ◽  
Frank Grundahl ◽  
Martin Asplund

AbstractThe “stellar” solution to the cosmological lithium problem proposes that surface depletion of lithium in low-mass, metal-poor stars can reconcile the lower abundances found for Galactic halo stars with the primordial prediction. Globular clusters are ideal environments for studies of the surface evolution of lithium, with large number statistics possible to obtain for main sequence stars as well as giants. We discuss the Li abundances measured for >450 stars in the globular cluster NGC 6397, focusing on the evidence for lithium depletion and especially highlighting how the inferred abundances and interpretations are affected by early cluster self-enrichment and systematic uncertainties in the effective temperature determination.


2016 ◽  
Vol 464 (2) ◽  
pp. 1456-1465 ◽  
Author(s):  
R. D. Jeffries ◽  
R. J. Jackson ◽  
E. Franciosini ◽  
S. Randich ◽  
D. Barrado ◽  
...  

1983 ◽  
Vol 71 ◽  
pp. 71-73
Author(s):  
S. Catalano ◽  
E. Marilli

Here we present a quatitative approach to the problem of the chromospheric emission and rotation in main sequence stars based on a consistent analysis of recent published data of stars from F8 to K5. This analysis has been performed using the following physical parameters:a) total power emission in the Call K line, Lk;b) stellar rotation period, Prot, from chromospheric emission variability;c) stellar ages from lithium abundance.


Science ◽  
2020 ◽  
Vol 368 (6491) ◽  
pp. eaba3282 ◽  
Author(s):  
Ed P. J. van den Heuvel ◽  
Thomas M. Tauris

Thompson et al. (Reports, 1 November 2019, p. 637) interpreted the unseen companion of the red giant star 2MASS J05215658+4359220 as most likely a black hole. We argue that if the red giant’s mass is ~1 solar mass, its companion can be a close binary consisting of two main-sequence stars. This would explain why no x-ray emission is detected from the system.


1982 ◽  
Vol 69 ◽  
pp. 105-108
Author(s):  
Peter Vanýsek

AbstractThe space distribution of some small dense clouds with point-like IR sources, resembles the clustering of young OB stars. It can be assumed that such objects contain heavy obscured high-luminosity stars on the ZAMS. From the comparison of infrared and radio data it follows that in typical cases, only one B star is the source of the radiation of the cloud. The total mass of the cloud is of the order of one solar mass. If the individual fragments of the cloud are gravitationally unstable, then in the later stage of the evolution only low-mass stars are formed. One can therefore expect that young OB stars are most frequently accompanied by low-mass pre-Main Sequence stars.


2006 ◽  
pp. 17-20 ◽  
Author(s):  
S. Ninkovic ◽  
V. Trajkovska

The present authors analyze samples consisting of Hipparcos stars. Based on the corresponding HR diagrams they estimate masses of Main-Sequence stars from their visual magnitudes. They find that already beyond the heliocentric radius of 10 pc the effects of observational selection against K and M dwarfs become rather strong. For this reason the authors are inclined to think that the results concerning this heliocentric sphere appear as realistic, i. e. the fraction of low-mass stars (under half solar mass) is about 50% and, as a consequence, the mean star mass should be about 0.6 solar masses and Agekyan's factor about 1.2. That stars with masses higher than 5 M? are very rare is confirmed also from the data concerning more remote stars. It seems that white dwarfs near the Sun are not too frequent so that their presence cannot affect the main results of the present work significantly.


2020 ◽  
Vol 643 ◽  
pp. A34
Author(s):  
A. Oetjens ◽  
L. Carone ◽  
M. Bergemann ◽  
A. Serenelli

Context. The method of gyrochronology relates the age of its star to its rotation period. However, recent evidence of deviations from gyrochronology relations has been reported in the literature. Aims. We study the influence of tidal interaction between a star and its companion on the rotation velocity of the star to explain peculiar stellar rotation velocities. Methods. We followed the interaction of a star and its planet using a comprehensive numerical framework that combines tidal friction, magnetic braking, planet migration, and detailed stellar evolution models from the GARSTEC grid. We focus on close-in companions from 1 to 20 MJup orbiting low-mass (0.8 − 1 M⊙) main-sequence stars with a broad metallicity of [Fe/H] = − 1 up to solar. Results. Our simulations suggest that the dynamical interaction between a star and its companion can have different outcomes that depend on the initial semi-major axis and the mass of the planet, as well as on the mass and metallicity of its host star. In most cases, especially in the case of planet engulfment, we find a catastrophic increase in stellar rotation velocity from 1 kms−1 to over 40 kms−1 while the star is still on the main-sequence. The main prediction of our model is that low-mass main-sequence stars with abnormal rotation velocities should be more common at low-metallicity, as lower [Fe/H] favours faster planet engulfment, based on the assumption that the occurrence rate of close-in massive planets is similar at all metallicities. Conclusions. Our scenario explains peculiar rotation velocities of low-mass main-sequence stars by the tidal interaction between the star and its companion. Current observational samples are too narrow and incomplete, and, thus, they are not sufficient for our model to be tested.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Ingrid Pelisoli ◽  
S. O. Kepler ◽  
Detlev Koester

AbstractEvolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS), there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.


Sign in / Sign up

Export Citation Format

Share Document