scholarly journals The Boomerang: A Crushed and Re-born PWN?

2004 ◽  
Vol 218 ◽  
pp. 213-214
Author(s):  
Roland Kothes ◽  
Bülent Uyaniker ◽  
Wolfgang Reich

We present new high radio frequency observations of the Boomerang pulsar wind nebula (PWN) made with the Effelsberg 100-m radio telescope. A comparison with low frequency data from the Canadian Galactic Plane Survey (CGPS; Taylor et al. 2003) reveals a change of the nebula's emission structure with frequency caused by a radial steepening of the radio spectrum above 5 GHz. We also find evidence that the reverse shock of the initial supernova shock wave has driven away or crushed the original PWN which might explain why the current nebula around the pulsar has such a low radio luminosity.

2019 ◽  
Vol 631 ◽  
pp. A176 ◽  
Author(s):  
A. Capetti ◽  
R. D. Baldi ◽  
M. Brienza ◽  
R. Morganti ◽  
G. Giovannini

Using the alternative data release of the TIFR GMRT Sky Survey (TGSS), we studied the low-frequency properties of FR 0 radio galaxies, the large population of compact radio sources associated with red massive early-type galaxies revealed by surveys at 1.4 GHz. We considered TGSS observations from FR0CAT, a sample formed by 104 FR 0s at z <  0.05: all but one of them are covered by the TGSS, and 43 of them are detected above a 5σ limit of 17.5 mJy. No extended emission has been detected around the FR 0s, corresponding to a luminosity limit of ≲4 × 1023 W Hz−1 over an area of 100 kpc × 100 kpc. All but eight FR 0s have a flat or inverted spectral shape (α <  0.5) between 150 MHz and 1.4 GHz: this spectral behavior confirms the general paucity of optically thin extended emission within the TGSS beam, as is expected for their compact 1.4 GHz morphology. Data at 5 GHz were used to build their radio spectra, which are also generally flat at higher frequencies. By focusing on a sub-sample of FR 0s with flux density > 50 mJy at 1.4 GHz, we found that ∼75% of them have a convex spectrum, but with a smaller curvature than the more powerful gigahertz peaked-spectrum sources (GPS). The typical FR 0s radio spectrum is better described by a gradual steepening toward high frequencies, rather than to a transition from an optically-thick to an optically-thin regime, possibly observed in only ∼15% of the sample.


2019 ◽  
Vol 622 ◽  
pp. A6 ◽  
Author(s):  
M. Arias ◽  
J. Vink ◽  
M. Iacobelli ◽  
V. Domček ◽  
M. Haverkorn ◽  
...  

Context. Mixed-morphology supernova remnants (MM SNRs) are a mysterious class of objects that display thermal X-ray emission within their radio shell. They are an older class of SNRs, and as such are profoundly affected by the environment into which they evolve. VRO 42.05.01 is a MM SNR of puzzling morphology in the direction of the Galactic anticentre. Aims. Low-frequency radio observations of supernova remnants are sensitive to synchrotron electrons accelerated in the shock front. We aim to compare the low-frequency emission to higher frequency observations to understand the environmental and shock acceleration conditions that have given rise to the observed properties of this source. Methods. We present a LOFAR High Band Antenna map centred at 143 MHz of the region of the Galactic plane centred at l = 166 ° ,  b = 3.5° at 143 MHz, with a resolution of 148″ and an rms noise of 4.4 mJy bm−1. Our map is sensitive to scales as large as 6°. We compared the LOw Frequency ARay (LOFAR) observations to archival higher frequency radio, infrared, and optical data to study the emission properties of the source in different spectral regimes. We did this both for the SNR and for OA 184, an H II region within our field of view. Results. We find that the radio spectral index of VRO 42.05.01 increases at low radio frequencies; i.e. the LOFAR flux is higher than expected from the measured spectral index value at higher radio frequencies. This observed curvature in the low-frequency end of the radio spectrum occurs primarily in the brightest regions of the source, while the fainter regions present a roughly constant power-law behaviour between 143 MHz and 2695 MHz. We favour an explanation for this steepening whereby radiative shocks have high compression ratios and electrons of different energies probe different length scales across the shocks, therefore sampling regions of different compression ratios.


2019 ◽  
Vol 490 (2) ◽  
pp. 2958-2975 ◽  
Author(s):  
Luke Jew ◽  
Angela C Taylor ◽  
Michael E Jones ◽  
A Barr ◽  
H C Chiang ◽  
...  

ABSTRACT The cosmic microwave background (CMB) B-mode signal is potentially weaker than the diffuse Galactic foregrounds over most of the sky at any frequency. A common method of separating the CMB from these foregrounds is via pixel-based parametric-model fitting. There are not currently enough all-sky maps to fit anything more than the most simple models of the sky. By simulating the emission in seven representative pixels, we demonstrate that the inclusion of a 5 GHz data point allows for more complex models of low-frequency foregrounds to be fitted than at present. It is shown that the inclusion of the C-BASS data will significantly reduce the uncertainties in a number of key parameters in the modelling of both the galactic foregrounds and the CMB. The extra data allow estimates of the synchrotron spectral index to be constrained much more strongly than is presently possible, with corresponding improvements in the accuracy of the recovery of the CMB amplitude. However, we show that to place good limits on models of the synchrotron spectral curvature will require additional low-frequency data.


2020 ◽  
Vol 496 (1) ◽  
pp. 723-738
Author(s):  
R Kothes ◽  
W Reich ◽  
S Safi-Harb ◽  
B Guest ◽  
P Reich ◽  
...  

ABSTRACT We present radio continuum and linear polarization observations of the pulsar wind nebula (PWN) CTB 87 (G74.9+1.2) with the Effelsberg 100-m Radio Telescope between 4.75 and 32 GHz. An analysis of these new data including archived low-frequency observations at 1420 and 408 MHz from the Canadian Galactic Plane Survey shows that CTB 87 consists of two distinct emission components: a compact kidney-shaped component, 14 × 8.5 pc2 (7.8 × 4.8 arcmin2) in size and a larger diffuse, spherical, and centrally peaked component of about 30 pc (17 arcmin) in diameter. The kidney-shaped component with a much steeper radio continuum spectrum is highly linearly polarized and likely represents a relic PWN. The diffuse component represents the undisturbed part of the PWN expanding inside a cavity or stellar wind bubble. The previously reported spectral break above 10 GHz is likely the result of missing large-scale emission and insufficient sensitivity of the high-frequency radio continuum observations. The simulation of the system’s evolution yields an age of about 18 000 yr as the result of a Type II supernova explosion with ejecta mass of about 12 M⊙ and explosion energy of about 7 × 1050 erg. We also found evidence for a radio shell in our polarization data that represents the blast wave that entered the molecular cloud complex at a radius of about 13 pc.


2002 ◽  
Vol 199 ◽  
pp. 25-31
Author(s):  
N. Udaya Shankar

The Mauritius Radio Telescope (MRT) is a Fourier synthesis instrument which has been built to fill the gap in the availability of deep sky surveys at low radio frequencies in the southern hemisphere. It is situated in the north-east of Mauritius at a southern latitude of 20°.14 and an eastern longitude of 57°.73. The aim of the survey with the MRT is to contribute to the database of southern sky sources in the declination range −70° ≤ δ ≤ −10°, covering the entire 24 hours of right ascension, with a resolution of 4' × 4'.6sec(δ + 20.14°) and a point source sensitivity of 200 mJy (3σ level) at 151.5 MHz.MRT is a T-shaped non-coplanar array consisting of a 2048 m long East-West arm and a 880 m long South arm. In the East-West arm 1024 fixed helices are arranged in 32 groups and in the South arm 16 trolleys, with four helices on each, which move on a rail are used. A 512 channel, 2-bit 3-level complex correlation receiver is used to measure the visibility function. At least 60 days of observing are required for obtaining the visibilities up to the 880 m spacing. The calibrated visibilities are transformed taking care of the non-coplanarity of the array to produce an image of the area of the sky under observation.This paper will describe the telescope, the observations carried out so far, a few interesting aspects of imaging with this non-coplanar array and present results of a low resolution survey (13' × 18') covering roughly 12 hours of right ascension, and also present an image with a resolution of 4' × 4'.6sec(δ + 20.14°) made using the telescope.


2021 ◽  
Vol 282 ◽  
pp. 116146
Author(s):  
Štefan Lyócsa ◽  
Neda Todorova ◽  
Tomáš Výrost

1996 ◽  
Vol 165 ◽  
pp. 263-269
Author(s):  
Simon Johnston

PSR B1259-63 is a 47-millisecond pulsar which was discovered in a high frequency survey of the galactic plane (Johnston et al. 1992a) and was subsequently found to be in a highly eccentric orbit with a main-sequence Be star known as SS 2883 (Johnston et al. 1992b). Radio observations of the pulsar led to a phase connected timing solution which predicted the epoch of periastron to be 1994 January 9 (MJD 49361.2); optical observations of the Be star led to a determination of its mass and of the size of its circumstellar disk (Johnston et al. 1994a): the star is of approximate spectral type B1e, with mass 10 M⊙ and radius 6 R⊙. If this mass is correct and the pulsar has a mass of 1.4 M⊙, then the inclination angle of the plane of the orbit with respect to the sky is 35°. This pulsar has an unusually flat radio spectrum compared to most pulsars, which makes it easily detectable up to 8.4 GHz. The narrow pulse permits dispersion and scattering measurements for studying the ionized plasma in the system. Moreover, the pulses are highly linearly polarized and permit determination of the rotation measure (RM), allowing measurements of the magnetic field along the line of sight. The 3.5-yr orbit of the pulsar around its companion thus provides us with an excellent probe of the stellar wind of the Be star over a wide frequency range.


Sign in / Sign up

Export Citation Format

Share Document