scholarly journals Physical Properties of Dlas: Metallicity and Neutral Hydrogen Column Density

2004 ◽  
Vol 217 ◽  
pp. 246-251
Author(s):  
J. L. Hou ◽  
C. G. Shu ◽  
W. P. Chen ◽  
R. X. Chang ◽  
C. Q. Fu

We investigate some basic properties of Damped Lyman alpha systems based on the Semi-Analytical model of disk galaxy formation theory. We derive the DLA metallicity, column density, number density, gas content and cosmic star formation rate by assuming that disks form at the center of dark halos, and the modelled DLAs are selected by Monte Carlo simulation according to the distributions of halo properties. We find that DLA hosts are dominated by small galaxies and biased to extended galaxies. In terms of model results, DLAs could naturally arise in a ACDM universe from radiatively cooled gas in dark matter halos. However, model predicts a reverse correlation between metallicity and the column density when compared with observations, regardless of the proposed observational bias. We argue that this could be resulted from the model limitations, or the inadequacy of Schmidt-type star formation mode at high redshift, or/and the diversities of DLA populations.

2019 ◽  
Vol 489 (1) ◽  
pp. 487-496 ◽  
Author(s):  
Boyan K Stoychev ◽  
Keri L Dixon ◽  
Andrea V Macciò ◽  
Marvin Blank ◽  
Aaron A Dutton

ABSTRACT We use 38 high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the global star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few 109 M⊙; at a fixed halo mass, WDM produces fewer stars than CDM, and finally at halo masses below 109 M⊙, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below 107 M⊙. For z > 7, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at z ∼ 6. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.


2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


2020 ◽  
Vol 58 (1) ◽  
pp. 617-659
Author(s):  
Masami Ouchi ◽  
Yoshiaki Ono ◽  
Takatoshi Shibuya

Hydrogen Lyman-α (Lyα) emission has been one of the major observational probes for the high-redshift Universe since the first discoveries of high- z Lyα-emitting galaxies in the late 1990s. Due to the strong Lyα emission originated by resonant scattering and recombination of the most abundant element, Lyα observations witness not only Hii regions of star formation and active galactic nuclei (AGNs) but also diffuse Hi gas in the circumgalactic medium (CGM) and the intergalactic medium (IGM). Here, we review Lyα sources and present theoretical interpretations reached to date. We conclude the following: ▪  A typical Lyα emitter (LAE) at z ≳ 2 with a L* Lyα luminosity is a high- z counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (dark matter halo) mass and star-formation rate of 108−9M⊙ (1010−11M⊙) and 1–10 M⊙ year−1, respectively. ▪  High- z SFGs ubiquitously have a diffuse Lyα-emitting halo in the CGM extending to the halo virial radius and beyond. ▪  Remaining neutral hydrogen at the epoch of cosmic reionization makes a strong dimming of Lyα emission for galaxies at z > 6 that suggests the late reionization history. The next-generation large-telescope projects will combine Lyα emission data with Hi Lyα absorptions and 21-cm radio data that map out the majority of hydrogen (Hi+Hii) gas, uncovering the exchanges of ( a) matter by outflow and inflow and ( b) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.


2016 ◽  
Vol 11 (S321) ◽  
pp. 309-314
Author(s):  
Neil H. M. Crighton ◽  
Michael T. Murphy ◽  
J. Xavier Prochaska ◽  
Gábor Worseck ◽  
Marc Rafelski ◽  
...  

AbstractWe present the largest homogeneous survey of redshift > 4.4 damped Lyα systems (DLAs) using the spectra of 163 quasars that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHI. After correcting for systematic effects using a combination of mock and higher-resolution spectra, we find ΩHI= 0.98+0.20-0.18 × 10−3 at 〈z〉 = 4.9, assuming a 20% contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHI can be described by the functional form ΩHI(z) ∝ (1 + z)0.4. This gradual decrease from z = 5 to 0 suggests that in the galaxies which dominate the cosmic star formation rate, Hi is a transitory gas phase fuelling star formation which must be continually replenished by more highly-ionized gas from the intergalactic medium, and from recycled galactic winds.


2012 ◽  
Vol 8 (S292) ◽  
pp. 245-245
Author(s):  
Jian Fu ◽  
Guinevere Kauffmann

AbstractWe study the redshift evolution of neutral and molecular gas in the interstellar medium with the results from semi-analytic models of galaxy formation and evolution, which track the cold gas related physical processes in radially resolved galaxy disks. Two kinds of prescriptions are adopted to describe the conversion between molecular and neutral gas in the ISM: one is related to the gas surface density and gas metallicity based on the model results by Krumholz, Mckee & Tumlinson; the other is related the pressure of ISM. We try four types of star formation laws in the models to study the effect of the molecular gas component and the star formation time scale on the model results, and find that the H2 dependent star formation rate with constant star formation efficiency is the preferred star formation law. We run the models based on both Millennium and Millennium II Simulation haloes, and the model parameters are adjusted to fit the observations at z = 0 from THINGS/HERACLES and ALFALFA/COLD GASS. We give predictions for the redshift evolution of cosmic star formation density, H2 to HI cosmic ratios, gas to star mass ratios and gas metallicity vs stellar mass relation. Based on the model results, we find that: (i) the difference in the H2 to HI ratio at z > 3 between the two H2 fraction prescriptions can help future observations to test which prescription is better; (ii) a constant redshift independent star formation time scale will postpone the star formation processes at high redshift and cause obvious redshift evolution for the relation between gas metallicity and stellar mass in galaxies at z < 3.


2020 ◽  
Vol 498 (3) ◽  
pp. 4109-4118
Author(s):  
G C Jones ◽  
R Maiolino ◽  
P Caselli ◽  
S Carniani

ABSTRACT The molecular gas content of high-redshift galaxies is a highly sought-after property. However, H2 is not directly observable in most environments, so its mass is probed through other emission lines (e.g. CO, [C i], [C ii]), or through a gas-to-dust ratio. Each of these methods depends on several assumptions, and are best used in parallel. In this work, we extend an additional molecular gas tracer to high-redshift studies by observing hydrogen deuteride (HD) emission in the strongly lensed z = 5.656 galaxy SPT0346−52 with ALMA. While no HD(1–0) emission is detected, we are able to place an upper limit on the gas mass of $\rm M_{H_2}\lt 6.4\times 10^{11}\, M_{\odot }$. This is used to find a limit on the $L^{\prime }_{\mathrm{ CO}}$ conversion factor of      $\rm \alpha _{CO}\lt 5.8\,M_{\odot}(K\,km\,s^{-1}\,pc^2)^{-1}$. In addition, we construct the most complete spectral energy distribution of this source to date, and fit it with a single-temperature modified blackbody using the nested sampling code multinest, yielding a best-fitting dust mass Mdust = 108.92 ± 0.02 M⊙, dust temperature 78.6 ± 0.5 K, dust emissivity spectral index β = 1.81 ± 0.03, and star formation rate SFR = 3800 ± 100 M⊙ yr−1. Using the continuum flux densities to estimate the total gas mass of the source, we find   $\rm M_{H_2}\lt 2.4\times 10^{11}\, M_{\odot }$ , assuming subsolar metallicity. This implies a CO conversion factor of αCO &lt; 2.2, which is between the standard values for MW-like galaxies and starbursts. These properties confirm that SPT0346−52 is a heavily starbursting, gas-rich galaxy.


2017 ◽  
Vol 608 ◽  
pp. A48 ◽  
Author(s):  
H. Dannerbauer ◽  
M. D. Lehnert ◽  
B. Emonts ◽  
B. Ziegler ◽  
B. Altieri ◽  
...  

It is not yet known if the properties of molecular gas in distant protocluster galaxies are significantly affected by their environment as galaxies are in local clusters. Through a deep, 64 h of effective on-source integration with the Australian Telescope Compact Array (ATCA), we discovered a massive, Mmol = 2.0 ± 0.2× 1011 M⊙, extended, ~40 kpc, CO(1–0)-emitting disk in the protocluster surrounding the radio galaxy, MRC 1138−262. The galaxy, at zCO = 2.1478, is a clumpy, massive disk galaxy, M∗ ~ 5 × 1011 M⊙, which lies 250 kpc in projection from MRC 1138−262 and is a known Hα emitter, named HAE229. This source has a molecular gas fraction of ~30%. The CO emission has a kinematic gradient along its major axis, centered on the highest surface brightness rest-frame optical emission, consistent with HAE229 being a rotating disk. Surprisingly, a significant fraction of the CO emission lies outside of the UV/optical emission. In spite of this, HAE229 follows the same relation between star-formation rate and molecular gas mass as normal field galaxies. HAE229 is the first CO(1–0) detection of an ordinary, star-forming galaxy in a protocluster. We compare a sample of cluster members at z > 0.4 thatare detected in low-order CO transitions, with a similar sample of sources drawn from the field. We confirm findings that the CO-luminosity and full-width at half maximum are correlated in starbursts and show that this relation is valid for normal high-z galaxies as well as for those in overdensities. We do not find a clear dichotomy in the integrated Schmidt-Kennicutt relation for protocluster and field galaxies. Our results suggest that environment does not have an impact on the “star-formation efficiency” or the molecular gas content of high-redshift galaxies. Not finding any environmental dependence in these characteristics, especially for such an extended CO disk, suggests that environmentally-specific processes such as ram pressure stripping do not operate efficiently in (proto)clusters.


2020 ◽  
Vol 500 (2) ◽  
pp. 2000-2011
Author(s):  
Jindra Gensior ◽  
J M Diederik Kruijssen

ABSTRACT In simple models of galaxy formation and evolution, star formation is solely regulated by the amount of gas present in the galaxy. However, it has recently been shown that star formation can be suppressed by galactic dynamics in galaxies that contain a dominant spheroidal component and a low gas fraction. This ‘dynamical suppression’ is hypothesized to also contribute to quenching gas-rich galaxies at high redshift, but its impact on the galaxy population at large remains unclear. In this paper, we assess the importance of dynamical suppression in the context of gas regulator models of galaxy evolution through hydrodynamic simulations of isolated galaxies, with gas-to-stellar mass ratios of 0.01–0.20 and a range of galactic gravitational potentials from disc-dominated to spheroidal. Star formation is modelled using a dynamics-dependent efficiency per free-fall time, which depends on the virial parameter of the gas. We find that dynamical suppression becomes more effective at lower gas fractions and quantify its impact on the star formation rate as a function of gas fraction and stellar spheroid mass surface density. We combine the results of our simulations with observed scaling relations that describe the change of galaxy properties across cosmic time, and determine the galaxy mass and redshift range where dynamical suppression may affect the baryon cycle. We predict that the physics of star formation can limit and regulate the baryon cycle at low redshifts (z ≲ 1.4) and high galaxy masses (M* ≳ 3 × 1010 M⊙), where dynamical suppression can drive galaxies off the star formation main sequence.


Author(s):  
Mahavir Sharma ◽  
Tom Theuns

Abstract We present the Iκεα model of galaxy formation, in which a galaxy’s star formation rate is set by the balance between energy injected by feedback from massive stars and energy lost by the deepening of the potential of its host dark matter halo due to cosmological accretion. Such a balance is secularly stable provided that the star formation rate increases with the pressure in the star forming gas. The Iκεα model has four parameters that together control the feedback from star formation and the cosmological accretion rate onto a halo. Iκεα reproduces accurately the star formation rate as a function of halo mass and redshift in the eagle hydrodynamical simulation, even when all four parameters are held constant. It predicts the emergence of a star forming main sequence along which the specific star formation rate depends weakly on stellar mass with an amplitude that increases rapidly with redshift. We briefly discuss the emerging mass-metallicity relation, the evolution of the galaxy stellar mass function, and an extension of the model that includes feedback from active galactic nuclei (AGN). These self-regulation results are independent of the star formation law and the galaxy’s gas content. Instead, star forming galaxies are shaped by the balance between stellar feedback and cosmological accretion, with accurately accounting for energy losses associated with feedback a crucial ingredient.


2020 ◽  
Vol 494 (4) ◽  
pp. 6053-6071 ◽  
Author(s):  
Sarah Appleby ◽  
Romeel Davé ◽  
Katarina Kraljic ◽  
Daniel Anglés-Alcázar ◽  
Desika Narayanan

ABSTRACT We study specific star formation rate (sSFR) and gas profiles of star-forming (SF) and green valley (GV) galaxies in the simba cosmological hydrodynamic simulation. SF galaxy half-light radii (Rhalf) at z = 0 and their evolution (∝(1 + z)−0.78) agree with observations. Passive galaxy Rhalf agree with observations at high redshift, but by z = 0 are too large, owing to numerical heating. We compare simbaz = 0 sSFR radial profiles for SF and GV galaxies to observations. simba shows strong central depressions in star formation rate (SFR), sSFR, and gas fraction in GV galaxies and massive SF systems, qualitatively as observed, owing to black hole X-ray feedback, which pushes central gas outwards. Turning off X-ray feedback leads to centrally peaked sSFR profiles as in other simulations. In conflict with observations, simba yields GV galaxies with strongly dropping sSFR profiles beyond ≳Rhalf, regardless of active galactic nucleus feedback. The central depression owes to lowering molecular gas content; the drop in the outskirts owes to reduced star formation efficiency. simba’s satellites have higher central sSFR and lower outskirts sSFR than centrals, in qualitative agreement with observations. At z = 2, simba does not show central depressions in massive SF galaxies, suggesting simba’s X-ray feedback should be more active at high-z. High-resolution tests indicate central sSFR suppression is not sensitive to numerical resolution. Reproducing the central sSFR depression in z = 0 GV galaxies represents a unique success of simba. The remaining discrepancies highlight the importance of SFR and gas profiles in constraining quenching mechanisms.


Sign in / Sign up

Export Citation Format

Share Document