scholarly journals Clues to the nature of dark matter from first galaxies

2019 ◽  
Vol 489 (1) ◽  
pp. 487-496 ◽  
Author(s):  
Boyan K Stoychev ◽  
Keri L Dixon ◽  
Andrea V Macciò ◽  
Marvin Blank ◽  
Aaron A Dutton

ABSTRACT We use 38 high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the global star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few 109 M⊙; at a fixed halo mass, WDM produces fewer stars than CDM, and finally at halo masses below 109 M⊙, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below 107 M⊙. For z > 7, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at z ∼ 6. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.

2020 ◽  
Vol 496 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Ying Zu

ABSTRACT The neutral hydrogen (H i) gas is an important barometer of recent star formation and metal enrichment activities in galaxies. I develop a novel statistical method for predicting the H i-to-stellar mass ratio, $f_{\mathrm{H\,{\small I}}}$, of galaxies from their stellar mass and optical colour, and apply it to a volume-limited galaxy sample jointly observed by the Sloan Digital Sky Survey and the Arecibo Legacy Fast ALFA survey. I eliminate the impact of the Malmquist bias against H i-deficient systems on the $f_{\mathrm{H\,{\small I}}}$ predictor by properly accounting for the H i detection probability of each galaxy in the analysis. The best-fitting $f_{\mathrm{H\,{\small I}}}$ predictor, with an estimated scatter of 0.272 dex, provides excellent description to the observed H i mass function. After defining an H i excess parameter as the deviation of the observed $f_{\mathrm{H\,{\small I}}}$ from the expected value, I confirm that there exists a strong secondary dependence of the mass–metallicity relation on H i excess. By further examining the 2D metallicity distribution on the specific star formation rate (sSFR) versus H i excess plane, I show that the metallicity dependence on H i is likely more fundamental than that on sSFR. In addition, I find that the environmental dependence of H i in the local Universe can be effectively described by the cross-correlation coefficient between H i excess and the red galaxy overdensity ρcc = − 0.18. This weak anticorrelation also successfully explains the observed dependence of H i clustering on $f_{\mathrm{H\,{\small I}}}$. My method provides a useful framework for learning H i gas evolution from the synergy between future H i and optical galaxy surveys.


2019 ◽  
Vol 488 (1) ◽  
pp. 419-437 ◽  
Author(s):  
Xiaohan Wu ◽  
Rahul Kannan ◽  
Federico Marinacci ◽  
Mark Vogelsberger ◽  
Lars Hernquist

Abstract We present self-consistent radiation hydrodynamic simulations of hydrogen reionization performed with arepo-rt complemented by a state-of-the-art galaxy formation model. We examine how photoheating feedback, due to reionization, shapes the galaxies properties. Our fiducial model completes reionization by z ≈ 6 and matches observations of the Ly α forest, the cosmic microwave background electron scattering optical depth, the high-redshift ultraviolet (UV) luminosity function, and stellar mass function. Contrary to previous works, photoheating suppresses star formation rates by more than $50{{\ \rm per\ cent}}$ only in haloes less massive than ∼108.4 M⊙ (∼108.8 M⊙) at z = 6 (z = 5), suggesting inefficient photoheating feedback from photons within galaxies. The use of a uniform UV background that heats up the gas at z ≈ 10.7 generates an earlier onset of suppression of star formation compared to our fiducial model. This discrepancy can be mitigated by adopting a UV background model with a more realistic reionization history. In the absence of stellar feedback, photoheating alone is only able to quench haloes less massive than ∼109 M⊙ at z ≳ 5, implying that photoheating feedback is sub-dominant in regulating star formation. In addition, stellar feedback, implemented as a non-local galactic wind scheme in the simulations, weakens the strength of photoheating feedback by reducing the amount of stellar sources. Most importantly, photoheating does not leave observable imprints in the UV luminosity function, stellar mass function, or the cosmic star formation rate density. The feasibility of using these observables to detect imprints of reionization therefore requires further investigation.


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


2016 ◽  
Vol 11 (S321) ◽  
pp. 279-279
Author(s):  
Mustafa K. Yıldız ◽  
Paolo Serra ◽  
Reynier F. Peletier ◽  
Tom A. Oosterloo ◽  
Pierre-Alain Duc

AbstractContextAccording to the ATLAS3D project, about 20 percent of all nearby early-type galaxies (D < 42 Mpc; MK < -21.5 mag; stellar mass Mstars ≳ 6 × 109 M⊙) outside clusters are surrounded by a disc or ring of low-column-density neutral hydrogen (Hi) gas with typical radii of tens of kpc, much larger than the stellar body.AimsOur aim is to understand the impact of these gas systems on the host galaxies, in particular, whether there is any recent star formation related to the Hi and effect of recent star formation on the host early-type galaxies.Methods and sampleWe analyse the distribution of star formation out to large radii by using resolved Hi images together with UV and optical images. We calculate the UV-UV and UV-optical colours in two apertures, 1-3 and 3-10 Reff. Using FUV emission as a proxy for star formation, we also estimate the integrated star formation rate in the outer regions. Our sample consists of 18 Hi-rich galaxies as well as 55 control galaxies where no Hi has been detected. We select the control sample galaxies to match the Hi-rich galaxies in stellar mass, environment, distance and stellar kinematics.ResultsIn half of the Hi-rich galaxies the radial UV profile changes slope at the position of the Hi radial profile peak. We find that the FUV-NUV and UV-optical colours in the first and second apertures of the Hi-rich galaxies are on average 0.5 and 0.8 mag bluer than the Hi-poor ones, respectively. We also find that the Hi-rich early-type galaxies have colour gradients that are almost 2 times stronger than the Hi-poor ones. we estimate the integrated star formation rate in the outer regions (R > 1 Reff) to be on average ~ 6.1×10−3 M⊙ yr−1 for the Hi-rich galaxies. We find that the gas depletion time in the outermost region (3-10 Reff) is ~ 80 Gyrs, which is similar to that estimated for the outskirts of spirals.ConclusionsStudying the stellar populations in early type galaxies with and without Hi, we find that galaxies with Hi generally show UV and UV-Optical colours in the outer parts that are bluer than those of early-type galaxies without Hi. This shows that the Hi is actively involved in recent star formation. The star formation rate in the outer regions is too low to build a stellar disc, and therefore change the morphology of the host even when integrated over several Gyrs. Star formation in outermost regions does not depend on the type of the galaxies.


2012 ◽  
Vol 8 (S292) ◽  
pp. 245-245
Author(s):  
Jian Fu ◽  
Guinevere Kauffmann

AbstractWe study the redshift evolution of neutral and molecular gas in the interstellar medium with the results from semi-analytic models of galaxy formation and evolution, which track the cold gas related physical processes in radially resolved galaxy disks. Two kinds of prescriptions are adopted to describe the conversion between molecular and neutral gas in the ISM: one is related to the gas surface density and gas metallicity based on the model results by Krumholz, Mckee & Tumlinson; the other is related the pressure of ISM. We try four types of star formation laws in the models to study the effect of the molecular gas component and the star formation time scale on the model results, and find that the H2 dependent star formation rate with constant star formation efficiency is the preferred star formation law. We run the models based on both Millennium and Millennium II Simulation haloes, and the model parameters are adjusted to fit the observations at z = 0 from THINGS/HERACLES and ALFALFA/COLD GASS. We give predictions for the redshift evolution of cosmic star formation density, H2 to HI cosmic ratios, gas to star mass ratios and gas metallicity vs stellar mass relation. Based on the model results, we find that: (i) the difference in the H2 to HI ratio at z > 3 between the two H2 fraction prescriptions can help future observations to test which prescription is better; (ii) a constant redshift independent star formation time scale will postpone the star formation processes at high redshift and cause obvious redshift evolution for the relation between gas metallicity and stellar mass in galaxies at z < 3.


2019 ◽  
Vol 491 (4) ◽  
pp. 5083-5100
Author(s):  
Jaime Salcido ◽  
Richard G Bower ◽  
Tom Theuns

ABSTRACT We introduce a simple analytic model of galaxy formation that links the growth of dark matter haloes in a cosmological background to the build-up of stellar mass within them. The model aims to identify the physical processes that drive the galaxy-halo co-evolution through cosmic time. The model restricts the role of baryonic astrophysics to setting the relation between galaxies and their haloes. Using this approach, galaxy properties can be directly predicted from the growth of their host dark matter haloes. We explore models in which the effective star formation efficiency within haloes is a function of mass (or virial temperature) and independent of time. Despite its simplicity, the model reproduces self-consistently the shape and evolution of the cosmic star formation rate density, the specific star formation rate of galaxies, and the galaxy stellar mass function, both at the present time and at high redshifts. By systematically varying the effective star formation efficiency in the model, we explore the emergence of the characteristic shape of the galaxy stellar mass function. The origin of the observed double Schechter function at low redshifts is naturally explained by two efficiency regimes in the stellar to halo mass relation, namely, a stellar feedback regulated stage, and a supermassive black hole regulated stage. By providing a set of analytic differential equations, the model can be easily extended and inverted, allowing the roles and impact of astrophysics and cosmology to be explored and understood.


2004 ◽  
Vol 217 ◽  
pp. 246-251
Author(s):  
J. L. Hou ◽  
C. G. Shu ◽  
W. P. Chen ◽  
R. X. Chang ◽  
C. Q. Fu

We investigate some basic properties of Damped Lyman alpha systems based on the Semi-Analytical model of disk galaxy formation theory. We derive the DLA metallicity, column density, number density, gas content and cosmic star formation rate by assuming that disks form at the center of dark halos, and the modelled DLAs are selected by Monte Carlo simulation according to the distributions of halo properties. We find that DLA hosts are dominated by small galaxies and biased to extended galaxies. In terms of model results, DLAs could naturally arise in a ACDM universe from radiatively cooled gas in dark matter halos. However, model predicts a reverse correlation between metallicity and the column density when compared with observations, regardless of the proposed observational bias. We argue that this could be resulted from the model limitations, or the inadequacy of Schmidt-type star formation mode at high redshift, or/and the diversities of DLA populations.


Author(s):  
Mahavir Sharma ◽  
Tom Theuns

Abstract We present the Iκεα model of galaxy formation, in which a galaxy’s star formation rate is set by the balance between energy injected by feedback from massive stars and energy lost by the deepening of the potential of its host dark matter halo due to cosmological accretion. Such a balance is secularly stable provided that the star formation rate increases with the pressure in the star forming gas. The Iκεα model has four parameters that together control the feedback from star formation and the cosmological accretion rate onto a halo. Iκεα reproduces accurately the star formation rate as a function of halo mass and redshift in the eagle hydrodynamical simulation, even when all four parameters are held constant. It predicts the emergence of a star forming main sequence along which the specific star formation rate depends weakly on stellar mass with an amplitude that increases rapidly with redshift. We briefly discuss the emerging mass-metallicity relation, the evolution of the galaxy stellar mass function, and an extension of the model that includes feedback from active galactic nuclei (AGN). These self-regulation results are independent of the star formation law and the galaxy’s gas content. Instead, star forming galaxies are shaped by the balance between stellar feedback and cosmological accretion, with accurately accounting for energy losses associated with feedback a crucial ingredient.


2019 ◽  
Vol 15 (S352) ◽  
pp. 43-43
Author(s):  
Pratika Dayal

AbstractGalaxy formation in the first billion years mark a time of great upheaval in the history of the Universe: the first galaxies started both the ‘metal age’ as well as the era of cosmic reionization. I will start by reviewing the dust production mechanisms and dust masses for high-redshift galaxies which will be revolutionized in the ALMA era. I will then show how the JWST will be an invaluable experiment to shed light on the impact of reionization feedback on early galaxy formation. As we look forward towards the era of 21cm cosmology, I will highlight the crucial and urgent synergies required between 21cm facilities (such as the SKA) and galaxy experiments (JWST, E-ELT and Subaru to name a few) to understand the physics of the epoch of reionization that remains a crucial frontier in the field of astrophysics and physical cosmology. Time permitting, I will try to give a flavour of how the assembly of early galaxies, accessible with the forthcoming JWST, can provide a powerful testbed for Dark Matter models beyond ‘Cold Dark Matter’.


Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K Inoue ◽  
Anton Vikaeus ◽  
...  

Abstract Photometric observations of the spectroscopically confirmed z ≈ 9.1 galaxy MACS1149-JD1 have indicated the presence of a prominent Balmer break in its spectral energy distribution, which may be interpreted as due to very large fluctuations in its past star formation activity. In this paper, we investigate to what extent contemporary simulations of high-redshift galaxies produce star formation rate variations sufficiently large to reproduce the observed Balmer break of MACS1149-JD1. We find that several independent galaxy simulations are unable to account for Balmer breaks of the inferred size, suggesting that MACS1149-JD1 either must be a very rare type of object or that our simulations are missing some key ingredient. We present predictions of spectroscopic Balmer break strength distributions for z ≈ 7–9 galaxies that may be tested through observations with the upcoming James Webb Space Telescope and also discuss the impact that various assumptions on dust reddening, Lyman continuum leakage and deviations from a standard stellar initial mass function would have on the results.


Sign in / Sign up

Export Citation Format

Share Document